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D e u t s c h e  Z us a m m e n f a s s u n g  

Diese Arbeit stellt zuerst die Architekturbausteine eines Komponentenframeworks dar, 
das im Rahmen der Dissertation implementiert wurde und das die Wiederverwendung der 
Kernteile von Modellen für künstlichen neuronalen Netze (artificial neural networks, ANN) 
erlaubt. Obwohl es eine Reihe von verschiedenen ANN-Modellen gibt, wurde ein 
wesentlicher Aspekt bisher kaum untersucht, nämlich der der Bereitstellung von 
wiederverwendbaren Komponenten, die eine effiziente Implementierung von entsprechende 
Systemarchitekturen für diese Domäne ermöglichen. Das Komponentenframework wird mit 
bestehenden Implementierungsansätzen für ANN-Modelle und -Simulationen verglichen. 

Die Anwendung von ANN sieht sich mit Schwierigkeiten konfrontiert, wie zum 
Beispiel Begrenzungen von Hardwareressourcen und passende Softwarelösungen. Die 
Tatsache, wie sich die ANN-Komponenten die Parallelisierung von vernetzten Computern 
zunutze machen, stellt einen Beitrag zum Stand der Technik im mobilen Code und in 
verteilten Systemen dar. Die Software-Architektur wurde so definiert, dass sie die 
Parallelisierung sowohl der internen Ausführung eines ANNs wie auch der Simulation von 
unterschiedlichen ANNs, simultan auf derselben Maschine oder auf unterschiedlichen 
Maschinen verteilt, erleichtert. Das kombinatorische Netzmodell (combinatorial network 
model, CNM) wurde dabei als Fallstudie für die Implementierung von Parallelität auf der 
Ebene der ANN-Struktur gewählt. 

Die durchgeführte Verbesserung eines der ANN-Modelle, nämlich des CNM, stellt 
einen Beitrag zum Bereich der ANNs selbst und zum Data-Mining dar. Der ursprüngliche 
CNM-Algorithmus konnte erheblich verbessert werden hinsichtlich der Optimierung des 
Suchraumes, mit dem Effekt einer höheren Ausführungsgeschwindigkeit und weniger 
Speicherverbrauch.  

Das letzte Kapitel bietet einen Überblick über offene Forschungsfragen, die während 
der Dissertation aufgetaucht sind. 

 

Schlüsselwörter: Framework, Komponenten, Wiederverwendung von Software, 
objektorientiertes Design, objektorientierte Architektur, künstliche neuronale Netze, 
intelligente Expertensysteme, hybride intelligente Systeme. 
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A b s t r a c t  

The main focus of the PhD thesis is about automating the implementation of artificial 
neural networks (ANNS) models by applying object/ and component technology. Though 
various ANN models exist, the aspect of how to provide reusable components in that 
domain for efficiently implementing adequate system architectures has been barely 
investigated. The prototypical component framework that was designed and implemented in 
the realm of the dissertation is compared to existing approaches for generically implementing 
ANN models and simulations. 

The application of ANNs faces difficulties such as limits of hardware resources and 
appropriate software solutions. How the ANN components harness parallelization on 
networked computers represents a contribution to the state-of-the-art in mobile code and 
distributed systems. The software architecture was defined in a way to facilitate the 
automated parallelization at the level of the inner execution of an ANN and at the level of 
the simulation of different ANNs at the same time, on one computing node or on different 
computing nodes in a distributed way. The Combinatorial Network Model (CNM) was 
chosen as case study for implementing parallelism at the level of the ANN structure. 

The improvement of one of the ANN models, namely the CNM, represents a 
contribution to the area of ANNs itself and to data mining. The original CNM algorithm 
could be significantly enhanced regarding the aspect how it deals with the search space, 
which results in a faster execution and less memory allocation. 

A sketch of research issues that result from the PhD work rounds out the thesis. 

Keywords: artificial neural networks, object-oriented frameworks, components, 
software reusability, object-oriented design, software architectures, intelligent decision 
support systems, hybrid intelligent systems. 
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1  I n t r o d u c t i o n  

1.1 Motivation 

The direction of the PhD thesis originated in the prototypes build in the realm of the 
Master thesis at the State University of Rio Grande do Sul (UFRGS � Brazil � 
http://www.inf.ufrgs.br).  Some studied neural network models and their first prototype 
implementations drew the attention of companies. Those wanted to have an expert system be 
able to analyze historical data and to build knowledge about these data, in order to perform 
decision-making. The Hycones system (Leão and Reategui, 1993) was developed for this 
purpose. It was mainly applied to the medical area to support decision on heart diseases. 
Later, another application also appeared requiring the application of Hycones in areas such as 
credit scoring (Reategui and Campbell, 1994; and Quelle AG � http://www.quelle.de) and 
logistics (newspaper distribution control system at RBS � http://www.clickrbs.com.br).  

1.2 Problem statement 

The implementation of the solutions prototype exposed the fragility of the Hycones 
system as a software system. Applying it to different application areas showed the following 
difficulties: 

• The artificial neural network�s inner code had to be changed to adapt to each 
application. 

• The input and output artificial neural networks data handling had to be coded 
nearly from scratch. 

• A change from one artificial neural network model to another represented a 
huge coding effort. 

• The limits of hardware and software resources. 

• The different parts of the system were implemented on different hardware and 
software platforms. 
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• The artificial neural networks algorithms had limitations such as not dealing 
with combinatorial explosion. 

The goal of the PhD thesis is to apply object-oriented component-based software 
engineering construction principles to overcome these problems. One of the results is a 
flexible architecture that facilitates the implementation of any artificial neural network model 
and that can be applied to different domain problems. 

1.3 Overview of the proposed solution 

This work starts with the identification of the software limitations of the typical ANN 
systems such as Hycones. The identified problems were solved by studying them in detail and 
by designing and implementing completely new software solutions to each of them. 

Initially, an object-oriented design of an artificial neural networks software solution was 
built. A few so-called frameworks1 were identified and built in order to permit the 
construction of any artificial neural network model based on them. Those frameworks 
formed the basis for building four different artificial neural network models as software 
components. 

Other important frameworks were identified and implemented to perform tasks that 
complement the artificial neural network�s functionality: A framework was created to build a 
different domain knowledge model that facilitates the fast adaptation of an artificial neural 
network model to any application problem at hand; another framework was built for fetching 
data for learning and testing the artificial neural networks models; and finally a framework for 
configuring, via user interface, the artificial neural network models was implemented.  

Based on the whole set of frameworks implemented to build and support the artificial 
neural network models, an artificial neural networks simulation framework was defined and a 
complete simulation tool (CANN Simulation Tool) was built. On top of this simulation tool, 
many domain problems can be modeled in parallel and different artificial neural network 
models can run at the same time in order to solve the problems at hand. Four artificial neural 
network components (CANN) were built based on the ANN frameworks. They run in the 
simulation tool. 

                                                           
1 A piece of software that is extensible through the callback style of programming 
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Two empirical studies were accomplished in the area of software parallelism. First, the 
study of the parallel software implementation of artificial neural networks, together with the 
implementation of a general-purpose solution for running artificial neural networks in 
parallel. Second, the study and implementation of a solution to run the simulation of the 
ANN instances in a distributed way using an ORB.  The two implementations where done in 
order to give hints on how to improve the artificial neural networks performance by better 
using the software and hardware infrastructure. 

Finally, the CNM model algorithm received special attention on its design and 
implementation using the given frameworks. Improvements on its algorithm and a parallel 
implementation solution were proposed and implemented in the realm of this PhD work.  

1.4 Organization of the thesis 

The thesis is organized in 8 chapters. Chapter 2 is dedicated to introduce the computer 
science areas involved in this thesis: Software Engineering (SWE) and Artificial Neural 
Networks (ANN). There, ANNs are motivated by biological perspective and the four ANN 
models implemented in the thesis are presented. Complementarily, the SWE concepts that 
are extensively applied along the thesis are also introduced. 

The following five chapters form the core parts of this thesis. Chapter 3 shows the 
implementation of the ANN frameworks. It shows in detail the design decisions of each 
framework and its relevant implementation aspects. It finally compares it to other work in the 
area.  

In sequence, the chapters 4 and 5 go deep on the parallel and distribution issues. 
Chapter 4 introduces ANN parallel implementation and shows what was the possible 
solution to have parallelism for the CANN simulation tool. Furthermore, this chapter shows 
in detail the proposed and implemented parallel solution to the CNM (Machado and Rocha, 
1989) model.  

Chapter 5 approaches the implementation of a distribution framework for the ANN 
components. The distribution solution is implemented in the CANN simulation tool in order 
to have the possibility of running different ANN models at the same time in different 
machines and centrally controlled. 
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Chapter 6 explains contributions of this thesis to the ANN field where the CNM 
artificial neural model has its learning algorithm optimized in order to be faster and allocate 
less memory during this process. 

Chapter 7 shows in detail the characteristics and functionalities of the CANN 
simulation tool. It also compares this tool to other ones that are commercially available. 
Chapter 8 has the conclusions of this work and the future research possibilities for its 
continuation. 

1.5 Statement of goals and contributions 

The main goal of the thesis is to come up with a flexible and efficient design for ANN 
implementations. For this purpose, object-oriented framework technology has been applied to 
the ANN domain for the first time. A framework for ANN development is constructed and 
various ANN models are implemented using this framework in order to evaluate its 
applicability. It is an important goal of this thesis to give contributions on how to better develop 
ANN software in order to make the ANN functionality optimized as a software system. It is 
also part of the goals to come up with contributions on how to implement ANN parallelism in 
software and code mobility for ANN architectures in order to provide ANN execution in a distributed 
system.  

To promote contributions to ANN models is another important goal and is concentrated on 
the CNM model, where the author has extensive experience regarding its development and 
applications.  

To better measure the importance of these goals, the software development practices 
done so far are evaluated. It means the identification of main development problems. To 
solve these problems techniques from the SWE area are chosen. This work shows these 
techniques are appropriate to ANN software development. 

The contributions of this work are concentrated on the areas of software engineering 
and artificial neural networks. In the software engineering area the main contribution is to 
show the applicability of object-oriented framework technology to the construction of ANN 
software. This work focused on: 

• Analyzing the ANN domain area. 
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• Deriving from the design analysis the design for the construction of the ANN 
framework. 

• Constructing different types of ANN architectures in order to prove the 
framework�s applicability. 

• Analyzing and implementing a solution for a parallel implementation of ANNs. 

• Analyzing and implementing ANN code mobility and ANN distributed 
execution in a LAN. 

• Implementing a simulation tool for ANN based on the defined frameworks. 

• Deploying and applying the constructed ANN simulation tool to different 
application areas. 

• Evolving the CNM artificial neural network by proposing and implementing a 
learning and testing algorithm that is faster and uses a smaller memory 
footprint.  

• Proposing and implementing a parallel solution for the CNM algorithm. 

Each of those contributions were carefully designed, implemented, tested and 
compared to related work. Some SWE techniques were extensively used and supported by 
this work. The hot-spot-driven design (Pree, 1995) was applied to the design of the flexible 
parts of the frameworks showing its applicability to the ANN area. Design-patterns (Gamma 
et al. 1995) and meta-patterns (Pree, 1995) proved to be an important vehicle of proper 
design communication among the involved developers. The design of the ANN frameworks 
can be shared with the whole community of ANN developers. The coining of the concept of 
Framelets (Pree and Koskimies, 1999 and 2000) was also supported by the design and 
implementation of the ANN basic frameworks that can be considered as Framelets. The 
accumulated experience in building the ANN framework components is an important 
contribution of this work and is shared with the research community through this text and 
the collection of publications produced along the development of this work.  

The new ANN components have been used in much different application areas as: 
weather forecast (Viademonte et. al, 2001a and 2001b); personalization of Internet sites 
where the ANN components are used to build knowledge about the user preferences, 
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navigation and transaction habits to build a personalized environment for a better user 
experience (http://www.godigital.com); and e-business such as the creation of an agent to 
analyze marketplace negotiation data and the optimization of the supply chain performance 
by implementing a VMI (Vendor Managed Inventory) algorithm based on ANN 
(http://www.mercador.com).  

As mentioned before, this work resulted in several publications: 

• (Pree, Beckenkamp and Da Rosa, 1997) introduces the software engineering 
challenges of the redesign of the Hycones system.  

• (Da Rosa, Beckenkamp and Hoppen, 1997) approaches the use of fuzzy logic 
to model semantic variables in expert systems. 

• (Beckenkamp, Pree and Feldens, 1998) introduces optimizations to the CNM 
algorithm. 

• (Beckenkamp and Pree, 1999) describes the artificial neural networks 
frameworks components design. 

• (Beckenkamp and Pree, 2000) exposes details of the artificial neural networks 
frameworks implementation.  

• (Da Rosa, Burnstein and Beckenkamp, 2000) presents results of the application 
of the Voyager ORB on the distribution of ANN components. 

• (Viademonte, Burnstein, Dahni, and Willians, 2001a and Viademonte and 
Burnstein, 2001b) presents the first results of a weather forecast expert system 
where the CANN simulation tool is applied. 
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2  C o n t e x t  a n d  S t a t e - o f - t h e - a r t  

A first step to understand the origin of ANNs is to relate them to the biological 
paradigm. It is important to know a about the biological neuron and nerves to understand 
why the ANN models make certain approximations to the biology. It is important to 
understand when the approximations are poor and when they are reasonable. 

2.1 Biological Motivation 

The brain�s elementary building blocks are the neurons. The study of the neuron, its 
interconnections and its role in the information processing is one important research field in 
modern biology. The research on ANN starts by trying to simulate the function of a neuron. 
ANN researchers adopt a minimal cellular structure that can be seen in Figure 2.1 

The dendrites are the transmission channels for the incoming information. The 
synapses are the contact regions with other cells and are responsible for supplying the 
dendrites with information. Some organs inside the cell body are responsible for keeping the 
cell continuously working. The mitochondria are responsible for supplying the cell with 
energy. The cell has one axon that is responsible for transmitting the output signal to other 
neurons. 

The information processing in the cell membrane is done via electrical signals produced 
by diffusion. In short, neurons transmit information using action potentials. The information 
processing involves a complex electrical combination and chemical process. The synapses 
control the direction of the information transmission. They can be inhibitory or excitatory 
depending on the kind of ion flowing through it.  

The cell processes information by integrating incoming signals. If the flow of ions 
(membrane potential) reaches a certain threshold, an action potential is generated at the axon 
of the cell. The information is not only transmitted but also weighed by the cell. Rojas (Rojas, 
1996) explains that �signals combined in an excitatory or inhibitory way can be used to 
implement any desired logic function�. This explains the huge information processing 
capability of the neuron systems. 
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Figure 2.1 � General structure of a generic neuron (Freeman 1992) 

Neuron information is stored at synapses. The synapses control the passage of ions, 
thus controlling the cell depolarization. The plasticity is the synaptic connection will 
determine the capacity of the cell in acting properly. Therefore, the synapses control is 
important information to the whole system�s functionality. In ANN this synaptic control 
efficiency is simulated via a constant that is multiplied to the flowing information on the 
input channels, the weight. 

The storage, processing and transmission of information at the neuron level are still not 
fully understood. Neurons form such complex nervous systems that researches in many areas 
such as mathematics, chemistry, medicine and psychology are trying to understand how cell 
nerves act. Computer science has played an important role on this research being an 
important test bed for the different concepts and ideas. Furthermore, ANN also can be seen 
as a computation paradigm that has much to be explored by scientists of computer science. 
For a deeper study on the biological foundations see Anderson, 1995 or Rojas, 1996. 

2.1.1 The generic artificial neuron 

The term artificial neuron is used in the literature interchangeably with: node, unit, 
processing element or even computational unit. Depending on the author�s approach or 
goals, one of those will be used. Here the term neuron will be kept in order to maintain the 
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analogy to the biological structures when modeling the framework objects. But whenever 
necessary, neurons will be distinguished by using the terms natural or artificial.  

The artificial neuron is a pretty huge simplification of the natural neuron. It is 
important not to be too restrictive and not to try to make a one-to-one relationship between 
the natural and the artificial neurons. In this work there are no discussions about the 
simplifications done. There are no discussions whether the models are appropriate 
simplifications of the reality or not. This work is based on what is already accepted in the 
community, and tries to improve those concepts from a software-engineering point of view.  
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Figure 2.2 � The artificial neuron 

The artificial neuron has input and output channels and a cell body. The synapses are 
the contact points between the cell body and the input or output connections, having a 
weight associated to them. The artificial neuron can be divided into two parts: the first is a 
simple integrator of synaptic inputs weighed by connection strengths; the second is a 
function that operates on the output of the integrator. The result of the second function will 
be the neuron output. The artificial neuron is schematically drawn in Figure 2.2. 

There are several mechanisms for calculating the neuron output value, such as: linear 
combination, mean-variance connections and min-max connections (Simpson, 1992). The 
most common way of doing it is the linear combination where the dot product (inner 
product) of the input values with the connection weights is calculated. In general it is 
followed by a nonlinear operation, the activation function (also called neuron function).  

Next a detailed description of the linear combination is shown: 

1. The ANN has several inputs (xj) and one output (yi). 
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2. Each input connection has an associated weight that controls the connection 
strength (wij) and is usually a real number. 

3. The weights can be inhibitory or excitatory (typically negative and positive 
values). 

4. The net input (Equation 2.1) is calculated by summing the input values 
multiplied by the corresponding weights (inner product or dot product). 

ij
j

ji wxnet ∑=
 

Equation 2.1 - Calculating the net of the neuron 

5. The output value (Equation 2.2) is calculated applying an activation function 
that uses the neti: 

)( iii netfy =  

Equation 2.2 - Calculating the output of the neuron 

Some possible activation functions are shown in the following section. 

2.1.1.1 Activation function  

There are many possible activation functions. The most common ones are: the Linear, 
the Step, the Ramp, the Sigmoid, and the Gaussian functions. The last four functions 
introduce nonlinearity in the network dynamics by bounding the output values within a fixed 
range.  
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Figure 2.3 � Activation functions (Simpson, 1992) 

Linear Function 

The Linear function produces a linearly modulated output. It is described by Equation 
2.3 and can be seen in Figure 2.3(a): 

xxf α=)(  

Equation 2.3 � Linear function 

Where α is a positive scalar. 

Step Function 

The Step function produces only two values, β and -δ. If x is equal or exceeds a 
predefined value θ the function produces β, otherwise it produces -δ. The values β and δ are 
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positive scalars. This function is binary and is used in neural models such as the Hopfield 
(Hopfield, 1982) and the BAM (Kosko, 1988). The Step function is defined on Equation 2.4 
and its result can be seen in Figure 2.3(b). 


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
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θβ

xif
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Equation 2.4 � Step function 

 Ramp Function 

The Ramp function is a combination of the linear and the step functions. It has upper 
and lower bounds and allows a linear response between them. It is defined on Equation 2.5 
and can be seen in Figure 2.3(c). The value γ is the function saturation. 
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Equation 2.5 � Ramp function 

 Sigmoid Function 

The Sigmoid function is a continuous version of the Ramp function and provides a 
graded, nonlinear response within a specified range. The most common sigmoid function is 
the Logistic distribution function that provides an output value from 0 to 1.The value α > 0 
and usually equal to 1. The Sigmoid function definition is shown at Equation 2.6 and its 
effect can be seen in Figure 2.3(d). 

xe
xf α−+

=
1

1
)(

 

Equation 2.6 � Sigmoid function 

Gaussian Function 

The Gaussian function is symmetric in its origin. It requires a variance value υ>0 to 
shape the function. The Gaussian function definition is shown at Equation 2.7 and its effect 
can be seen in Figure 2.3(e). 
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Equation 2.7 � Gaussian function 

2.1.2 ANN Architectures 

The natural neurons form the neural nerves when connected. In ANN the artificial 
neurons are connected in many different ways forming architectural characteristics. The 
learning algorithms and the architectures are closely related. It is important to have a clear 
concept of how the artificial neurons may be interconnected to form the specific 
architectures, because this will define how the computer implementations of the architectures 
can be done. The possible computer implementation solutions for the specific architectures 
and learning algorithms are going to be explained later. Following the description of the 
principal ANN architectures is as follows. 

2.1.2.1 Single-Layer Feedforward Networks 

In this simplest network, a layer of input neurons is connected to a layer of output 
neurons. The �single-layer� designation refers to the output layer. The layer of input neurons 
is not considered because it does not process any computation over the input values. It just 
bypasses the input values. An example of this kind of neural network is a linear associative 
memory where an input pattern is associated to an output pattern, both in form of a vector. 
Figure 2.4 shows a single-layer network of 3 output nodes. 

 

I n p u t   L a y e r 

O u t p u t   L a y e r 

 

Figure 2.4 � Single-layer feedforward network 

2.1.2.2 Multi-Layer Feedforward Networks 

In this architecture, one or more hidden layers of neurons are present. Those networks 
are able to deal with higher-order problems because of the extra set of connections and the 
extra dimension of neural iterations (Churchland and Sejnowski, 1992; Haykin, 1994).  
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Figure 2.5 shows a multi-layer 4-2-3 network that means a network formed by an input 
layer with 4 neurons, only one hidden layer with 2 neurons and an output layer with 3 
neurons. The network is fully connected because each neuron in one layer is connected to all 
neurons in the next layer. It also may happen that not all the neurons of one layer are 
connected to all neurons of the subsequent layer. This may happen when the user has a 
certain previous knowledge about the pattern being classified. He/she is then able to preset 
the network connections. Figure 2.6 shows a multilayer 4-2-3 network not fully connected. 

 

I n p u t   L a y e r 

O u t p u t   L a y e r 

 

Figure 2.5 � Multilayer feedforward network fully connected 

 

I n p u t   L a y e r 

O u t p u t   L a y e r 

 

Figure 2.6 � Multilayer feedforward network not fully connected 

2.1.2.3 Recurrent Networks 

This network model has at least one feedback loop. It may have the same architecture 
as a layered network, but it is necessary to have the feedback. The feedback can happen from 
the output of one neuron back to the input of another neuron. This feedback may happen 
among neurons of the same layer or neurons of different ones. The feedback may also 
happen as a self-feedback when the output of the neuron is returned to its own input. The 
feedback deeply influences the network learning capability and its performance. Figure 2.7 
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shows a single-layer recurrent network where the output signals of the neurons are fed to the 
input of the other neurons in the same layer. 

 

I n p u t   L a y e r 

O u t p u t   L a y e r 

 

Figure 2.7 � Recurrent network with no self-feedback loops 

2.1.2.4 Lattice Networks 

Lattice Networks consist of networks formed by arrays of neurons at any dimension. 
An input neuron is associated to each array supplying the signal to the array. Figure 2.8 shows 
a two-dimensional lattice network of 3-by-3 neurons fed from a layer of 3 input neurons.  

For each of the above architectures, various learning algorithms were proposed. In this 
work, the last 3 architectures were considered when choosing the test models once the single-
layer is a simplification of the multi-layer. Two multi-layer models were chosen, one case of 
fully connected network and one case of not fully connected network. The fully connected 
one is the Backpropagation (Rumelhard and McClelland, 1986) and the other one is the 
CNM (Machado and Rocha, 1990). The chosen recurrent network is the ART1 model  
(Grossberg, 1976; Grossberg, 1987) and the chosen lattice model is the SOM (Kohonen, 
1982). The description of these 4 models is presented in Section 2.2 below. 

 
I n p u t 
L a y e r 

O u t p u t 
L a y e r  

Figure 2.8 � Lattice network 
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2.2 ANN Learning Algorithms 

Since the information of how the neurons process data is on the weights, the weight 
values will determine whether the neuron is able to accomplish a certain task or not. So 
learning is a process of finding weights that represent the system knowledge. In practice, the 
learning process is the modification of the weight values in order to make the output values 
the proper ones, given a certain input data. The learning law is determined by the 
modification of the strength of synaptic junctions based on a system of differential equations 
for the weight values. The system of equations is solved to an acceptable approximation 
solution.  

The values of the connection weights will determine how well the neural network 
solves the problems. These values may be predefined and hardwired into the network. 
However, such method is rarely adopted because it is very difficult to know in advance the 
appropriate values for the weights. A learning algorithm often determines the values of the 
weights. The learning algorithm is an automatic adaptive method that tries to fit the 
appropriate weights to the system solution. There is no explicit programming for the solution 
achieved.  

Several algorithms are available for changing the values of the connection weights. It is 
not the goal here to cover all the possible algorithms but to introduce the general ideas 
behind them. The learning algorithms are divided into two categories: supervised and 
unsupervised learning. 

Supervised learning is a process that incorporates global information and/or a teacher. 
The teacher regulates the learning, informs the network what it has to learn and checks if it 
has properly learned or not. Supervised learning has information deciding when to turn off 
the learning, deciding how long and how often to present each datum for learning, and 
supplying performance information. Some well-known algorithms that implement supervised 
learning are error correction learning, reinforcement learning and stochastic learning.  

Supervised learning can be subdivided into two subcategories: structural and temporal 
learning. The first tries to find the best input/output pattern relationship for each pattern 
pair. It is used to solve problems such as pattern classification and pattern matching. The 
second one is concerned with finding a sequence of patterns necessary to achieve some final 
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outcome. The current response of the network is dependent on the previous inputs and 
responses. Examples of use are prediction and control. 

The unsupervised learning uses only local information during the learning. It organizes 
presented data discovering their collective properties. Examples of unsupervised algorithms 
are Hebbian learning and competitive learning. 

In this work, there is no necessity to build up a complete taxonomy of the possible 
learning algorithms. There are several algorithms with innumerable variations. More complete 
lists of learning algorithms can be found in the neural networks literature such as Haykin, 
1994; Simpson, 1992; and Rojas 1996. 

A brief explanation of some relevant supervised and unsupervised learning algorithms 
follows. 

2.2.1 Hebbian Learning 

It is the simplest way of adjusting the connection weight values. It is based on the work 
of the neuropsychologist Donald O. Hebb (1949) (Haykin, 1994). Hebb hypothesized that 
the change in a synapse�s efficacy is prompted by a neuron�s ability to produce an output 
signal. It proposes a correlation-based adjustment of the connection weight values. That 
means if the activation of a neuron A repeatedly and persistently caused a neuron B to fire, 
then the efficacy of the connection among those neurons is improved. This idea was 
expanded to the inverse sense where either uncorrelated or negatively correlated activity 
produces synaptic weakening.  

The Hebbian synapses efficiency thus is a mechanism that is time dependent because it 
relies on the exact time of occurrence of the presynaptic and postsynaptic activities. It is also 
a highly local mechanism where the local available information is used to produce a local 
synaptic modification. Finally, the Hebbian synapse has an interactive nature because it 
depends on activities on both sides of the synapse, that is, it depends on the interaction 
among the presynaptic and postsynaptic activities. 

The mathematical models of Hebbian learning can be found in (Haykin, 1994; and 
Simpson, 1992). Important neural network models that implement this kind of learning 
include:  
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• The Linear Associative Memory (Anderson, 1970; Kohonen, 1972; Haykin 
1994) that employs this learning and analyzes its capabilities;  

• The Hopfield network (Hopfield, 1982) which is a one-layer network that 
restricts the neuron activity to either binary {0,1} or bipolar {-1,1} values and 
introduces feedback connections forming a nonlinear, dynamic system; 

• The Bidirectional Associative Memory (BAM) (Kosko, 1988), which 
implements this learning in a two-layer network.  

2.2.2 Competitive Learning 

Competitive learning is a method of automatically creating classes for a set of input 
patterns. This kind of learning was introduced and extensively studied by Grossberg 
(Grossberg 1970, and 1982). The basic idea behind this learning method is that the output 
neurons compete among themselves for being the one to fire. Typically the input data is 
organized as vectors and the neural network maps the input vectors into its synaptic weights. 
The classes are represented by the groups of neurons that have the nearest synaptic vectors to 
a given input vector pattern. Important implementations of this kind of learning are: 

• The Adaptive Resonance Theory (ART) (Grossberg, 1987) where the neurons 
of the competitive layers shall compete to find appropriate pattern 
classifications without compromising the neural network capacities of 
generalization (stability) and discrimination (plasticity); 

• The Self-Organizing Feature Maps (SOM) also known as the Kohonen model 
(Kohonen, 1984) where neurons in the competitive layer compete to map the 
input features trying to simulate the cerebral cortex areas of storing the 
knowledge.  

2.2.3 Error Correction Learning 

When applying a data value to the input layer of neurons of a neural network, this data 
value is processed by the network neurons sequentially until a signal reaches the output 
neurons of the network. The output values produced by the output neurons should be the 
desired output values. A learning algorithm can be used to gradually approximate the 
computed output to the desired output. The error correction learning adjusts the connection 
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weights considering the proportional difference between the desired and the computed 
values.  

A two-layer network implementing error correction learning is able to solve linear 
separable problems. Examples of two-layer neural networks that implement error correction 
learning are: 

• The Perceptron (Rosenblatt, 1962); 

• The ADALINE (Widrow and Hoff, 1960). 

A multilayer network using error correction learning is able to capture nonlinear 
mappings between the input and output patterns. For a long time the problem was to 
establish an appropriate algorithm to do the error correction for the hidden neurons 
connection weights based on the output neurons output values. The point was to determine 
how dependent the network output is from the output generated by the hidden neurons. It is 
ultimately a problem of minimization of a cost-function based on the error signal produced 
by the network output. The solution is the use of partial differentiation to calculate weight 
changes for any weight in the network (the gradient descent method; Widrow and Stearns, 
1985; Haykin 1994). An example of neural network using the multilayer error correction 
algorithm is: 

• The Backpropagation (Werbos, 1974; Parker, 1985; leCun, 1985; Rumelhart, 
Hinton and Williams, 1986), which introduced an error correction algorithm for 
multilayer networks. 

2.2.4 Reinforcement Learning  

It is similar to error correction learning because the weights are also reinforced for 
correct performance, and punished for incorrect performance. The difference is that the error 
correction uses a more specific algorithm where the output of each neuron on the output 
layer is considered, while the reinforcement learning uses nonspecific error information to 
determine the performance of the network. Furthermore, in reinforcement learning the 
gradient descent is performed in probability space while in error correction learning is 
performed in error space. The reinforcement learning is ideal for using in prediction and 
control where there is no specific error information available, only overall performance 
information. Neural network examples that use reinforcement learning are: 
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• The Adaptive Heuristic Critic neural network (Barto et al.,1983) which 
introduced the use of a critic to convert the primary reinforcement signal 
received from the environment into a higher-quality reinforcement signal called 
the heuristic reinforcement signal. The learning system consists of three 
components very much used in Artificial Intelligence: learning element, 
knowledge base and performance element. The learning element is responsible 
for doing all changes in the knowledge base, and the performance element is 
responsible for selecting actions randomly on the basis of a distribution that is 
determined by the knowledge base; 

• The Associative Reward-Penalty neural network (Barto, 1985). 

2.2.5 Stochastic Learning 

This learning method adjusts connection weights to a multilayer network using random 
process, probability and energy relationship. The neural network escapes local energy minima 
in favor of a deeper energy minimum via probabilistic acceptance of energy states. The 
learning process is governed by a �temperature� parameter that slowly decreases the number 
of probabilistically accepted higher energy states. An example of this learning is: 

• The Boltzman machine (Ackley et al. 1985). 

2.3 ANN Input and Output Data 

The neural network has to be set with data to do the learning and testing processes. All 
models need an input data pattern to be applied in its input neurons in order to learn or test 
this data pattern. The data to be applied to the network must be prepared in a way that the 
network is able to understand and process it. The quality of what is learned by the neural 
network depends very much on what the patterns are representing. Typically, each data 
pattern must be transformed in a vector of values that represent the pattern to be applied. 
The appropriate transformation of the data in the input vector is essential to the learning 
process. Many different features can be modeled from the same problem at hand. For 
example, the age of a person can be modeled as discrete values, sets, or fuzzy sets. 
Depending on how it was modeled, the network can succeed or not in the learning process. 

Furthermore, there are neural networks that need to have input and output patterns 
presented during the learning process, the networks based on supervised learning such as the 
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error correction learning algorithm. The input pattern is applied on the input neurons, then 
the signal flows over the network producing an output. The produced output is then 
compared with the desired output for the given input pattern. The comparison results in a 
difference that is used to do the error correction of the network connection weights.  

Some neural networks accept only binary data as input such as the discrete Hopfield 
model (Hopfield, 1982), other networks accept real numbers like the Backpropagation 
(Werbos, 1974; Parker, 1985; leCun, 1985; Rumelhart, Hinton and Williams, 1986). The 
number of neurons on the network input layer usually is determined by the size of the vector 
to be applied, so that each vector element value is applied to one input neuron. The number 
of neurons in the input and the output layers are not necessarily the same. 

The data preparation (pre-processing) for applying to the neural network simulation is a 
problem that has to be faced by the developer. A programmer often has to code the data 
transformation to the chosen ANN model,  take care of the chosen ANN architecture (the 
number of neurons on the input and output layers) and so on.  

The hard coding of the data preparation can generate overhead in many situations:  

• For each new problem that the ANN has to be applied, a specific program has 
to be created to do the appropriate data pre-processing.  

• Frequently the ANN architecture is changed during the process of finding the 
appropriate solution because certain features are added, removed or applied in 
a different way.  

• Sometimes the solution via a neural model is not possible and the programmer 
chooses to go for another model. This may imply changing completely the way 
the data has to be pre-processed.  

To avoid reprogramming of the data pre-processing in each of the above situations, it 
is important to use appropriate pre-processing tools that can easily integrate with the ANN 
implementation. One solution to have a nice integration is to create a pre-processing 
framework that deals with the data independently of the ANN model and the selected 
features. The construction of such a framework is proposed in this work via the Domain 
framework that is explained in Chapter 3. 
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2.4 Chosen ANN Models 

In the realm of this work, it is not possible to approach the various existing ANN 
models. Few models were picked up among the most important ones, based on some criteria 
such as: application interest (potential), architecture and kind of learning. The idea is to be 
able to cover a good variety of situations, being able to implement enough generalizations 
that could be useful for most of the ANN models without having to implement many 
models. 

The first chosen model was the Backpropagation (Werbos, 1974; Parker, 1985; leCun, 
1985; Rumelhart, Hinton and Williams, 1986). This model implements a supervised learning 
based on the error correction learning algorithm. Its architecture is feedforward multilayer 
and it is fully connected. The Backpropagation is a widely used model for structural and 
temporal classifications. There are many variations of this model. 

The second chosen model is the Combinatorial Neural Model (CNM) (Machado and 
Rocha 1990). This model also implements supervised learning based on a variation of the 
error backpropagation learning algorithm. The network is feedforward and not fully 
connected. Besides being an important and interesting neural model by its concepts, the 
reasons to implement it in this work were twofold: the profound knowledge of the author on 
this model; and the special interest in the application of this model on the credit scoring 
problem of companies. 

Third, a typical unsupervised competitive learning model was chosen, the Self-
Organizing Feature Map (SOM) (Kohonen, 1984). The SOM architecture is based on a two-
dimensional lattice map. The SOM model has been largely applied in different areas such as 
image and speech recognition. 

Finally, another unsupervised competitive learning model was chosen, the Adaptive 
Resonance Theory (ART) (Grossberg, 1987). The extra important architectural aspect 
implemented by this model is the presence of feedback connections among its neurons, so 
the network has a recurrent architecture.  

Next, each of the four models is introduced. The goal here is not only to introduce the 
theoretical aspects of each model but also to find out the main characteristics of each one 
and, specially, the commonalties among the models. Those characteristics and commonalties 
are important to properly create an object model to build the neural network components. 
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2.4.1 The Backpropagation 

The Backpropagation neural network (Werbos, 1974; Parker, 1985; leCun, 1985; 
Rumelhart, Hinton and Williams, 1986) is a multilayer, feedforward network, using a 
supervised learning mode based on error corrections. Minsky and Papert (1969) have 
provided a very careful analysis of the capabilities of the neural models proposed so far. At 
that moment, the Perceptron was offered a very simple guaranteed learning rule (the delta 
rule � Widrow and Hoff, 1960) for all problems that can be solved by a two-layer 
feedforward network. What Minsky and Papert (1969) have shown was that this learning rule 
was capable of solving only linear separable problems. Later, Rumelhart, Hinton and 
Williams (1986) have shown that the addition of hidden neurons to the neural network 
architecture would permit the mapping of the problem representation in a way that non-
linear separable problems could be solved.  

The problem, at that moment, was that there was no specified learning rule to cope 
with the hidden neurons. The solutions that came up later to solve this problem were  the 
following three:  

• The addition of weight values on the hidden neurons by hand, assuming some 
reasonable performance;  

• The competitive learning where unsupervised learning rules are applied in order 
to automatically develop the hidden neurons.  

• The creation of a learning procedure capable of learning an internal 
representation (using the hidden neurons) that is adequate for performing the 
task at hand. 

The Generalized Delta Rule represents the latest approach, which implements a 
supervised learning algorithm based on the error correction in a multilayer neural network 
and which is known as the Backpropagation neural network. The proposed learning 
procedure involves the presentation of a set of input and output patterns to the neural 
network. The input patterns typically correspond to a sample of the real patterns. For each 
input pattern one output pattern is determined. The output patterns are the known 
classification of the correspondent input patterns. The patterns are represented in the form of 
a vector. When learning, the system first uses the input vector to produce its own output 
vector and then compares this with the desired output (the output pattern). If there is no 
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difference, no learning takes place, but if there is a difference, the weights of the network are 
changed in order to reduce this difference. 

The generalized delta rule minimizes the squares of the differences between the actual 
and the desired output values summed over the output neurons and all pairs of input/output 
vectors. There are many ways of deriving the delta rule; derivations are detailed in (Rumelhart 
at al.1986). 

Figure 2.9 shows a generic Backpropagation neural network architecture with one layer 
of hidden neurons. The network is fully connected, having all neurons of one layer connected 
to all neurons of the next layer. It has an input layer which number of neurons corresponds 
to the size of the input vector. The number of neurons for the output layer corresponds to 
the size of the output vector. The Backpropagation may have more than one layer of hidden 
neurons. The number of neurons on the hidden layer may define the capability of the 
network in mapping the problem properly. Usually the determination of the number of 
neurons on the hidden layers and the number of hidden layers is very difficult. Typically, the 
network developer or user determines them empirically. 

 

I n p u t   L a y e r 

O u t p u t   L a y e r 

H i d d e n   L a y e r . . . . . . 

. . . 

I n p u t   P a t t e r n s 

O u t p u t   P a t t e r n s 

. . . 

 

Figure 2.9 � Generic Backpropagation network 

Next, a sequence of equations will be introduced showing the mathematical description 
of the generalized delta rule or the Backpropagation algorithm. 
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First the input vector xp = (xp1, xp2,�, xpN)t  is applied to the input layer of the 
network. The input neurons just bypass the input values to the hidden neurons via the 
connection synapses. The hidden neurons will calculate its net using Equation 2.8:  

∑
=

+=
N

i
jpijipj xwnet

1

θ
 

Equation 2.8 � Hidden neurons net 

In Equation 2.8, p is the pattern being learned, j denotes the jth hidden unit, jiw  is the 

weight on the connection from the ith input unit to the jth hidden unit, and jθ  is the bias 

value. The bias is useful to accelerate the network convergence. Equation 2.9 gives the 
activation of the hidden neuron. 

)( pjjpj netfi =  

Equation 2.9 � Hidden neurons activation 

The calculation of the output neurons net (netpk) and the corresponding output value 
(Opk) is the same as shown in Equations 2.10 and 2.11. In these equations, the difference to 
Equations 2.8 and 2.9 is that the index k denotes the kth output unit. 
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Equation 2.10 � Hidden neurons net 

)( pkkpk netfo =  

Equation 2.11 � Hidden neurons activation 

Function f can assume several forms as seen previously on the activation functions 
exemplified in Figure 2.3 (Activation functions). Typically, two forms are of interest: linear 
and sigmoid output functions given by Equations 2.12 and 2.13 respectively. The same 
function forms are valid for both hidden and output neurons. 

pkpkk netnetf =)(  

Equation 2.12 � Linear output function 
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Equation 2.13 � Sigmoid output function 

After propagating the input signals over the network as explained by the equations 
above, it is time to calculate the local gradients for the output and hidden layers. This 
calculation is done based on the difference between the real and the desired output, that is 
the principle of the supervised learning as already explained. The calculation of the local 
gradients for the hidden neurons is done before the update of the connection weights to the 
output layer neurons. Equation 2.14 shows the calculation of the local gradients for the 
output neurons. 

)()( ´
pkkpkpkpk netfoy −=δ  

Equation 2.14 � Output neurons local gradients function 

Equation 2.15 shows the calculation of the local gradients for the hidden neurons. 

∑=
k

kjpkpjjpj wnetf δδ )(´  

Equation 2.15 � Hidden neurons local gradients function 

Equation 2.16 shows the f´ function that is the derivative of the sigmoid activation 
function in respect to its total input, netpk. The function shown is the one used for the output 
neurons, the same is valid for the hidden neurons changing the index k by index j. 

)1()(´
pkpkpkk ooof −=  

Equation 2.16 � Sigmoid function derivative 

Having calculated the local gradients for all neurons on the output and hidden layers, it 
is time to go backwards recalculating the weights of the neural network based on those local 
gradients. It is necessary to calculate the negative of the gradient of Ep (error for the example 
pattern p), pE∇ , with respect to the weights wkj, to determine the direction in which to 

change the weights. Then the weights are adjusted so that the total error is reduced. Equation 
2.17 calculates the error term Ep that is useful to determine how well the network is learning. 
When the error is acceptably small for each of the training examples, the training can be 
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stopped. Figure 2.10 exemplifies a hypothetical error surface in weight space, its local and 
global minima and the gradient descendent.  
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Equation 2.17 � Error term 
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Figure 2.10 � Hypothetical error surface 

The constant that assures the proportionality of the error adjustments steps is the 
learning rate η . The larger this constant, the larger the changes in the weights. The chosen 

learning rate shall be as large as possible without leading to oscillation. One way to avoid 
oscillation is to include to the generalized delta rule a momentum term that has a parameter 
α . Thereby Equation 2.18 gives the weight change for the connections among the output 
and hidden neurons in the iteration time t.  

( ) )1()( −∆+=∆ twitw kjppjpkkjp αδη  

Equation 2.18 � Weight change magnitude for connections among output and hidden neurons 

 Equation 2.19 gives the update of the weight value for the connections among the 

output neurons and the hidden neurons. 

)1()()()1( −∆++=+ twitwtw kjppjpkkjkj αδη  

Equation 2.19 � Weight update for connections among output and hidden neurons 
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Similarly, Equation 2.20 gives the weight change for the connections among the hidden 
and the input neurons in the iteration time t. 

( ) )1()( −∆+=∆ twxtw jipipjjip αδη  

Equation 2.20 � Weight change magnitude for connections among hidden and input neurons 

Then Equation 2.21 gives the update of the weight value for the connections among 
the hidden neurons and the input neurons. 

)1()()()1( −∆++=+ twxtwtw jipipjjiji αδη  

Equation 2.21 � Weight update for connections among hidden and input neurons 

Once the network learning reaches a minimum, either local or global, the learning 
stops. If it reaches a local minimum, the error produced at the network outputs can still be 
unacceptably high. The solution then is to restart the network learning from scratch with new 
weights for the connections. If this is still not the solution, the number of neurons on the 
hidden layer can be improved, or the learning parameters learning rate and momentum can be 
changed. 

Important aspects to consider on the object model for the Backpropagation are: 

• The input nodes just bypass the information. Usually this information is a 
normalized set of values between 0 and 1, resulting from a pre-processing of 
the input data.  

• The hidden and the output neurons implement the Perceptron functionality 
where the dot product is applied and a nonlinear function gives the neuron 
activation.  

• In the original model the connections among the neurons are feedforward. There 
are no feedback connections and the network is fully connected.  

• The number of input, hidden and output neurons is determined based on the 
expert knowledge on the application domain.  

• Even not having feedback connections the backward propagation of the error 
terms is a computation in the reverse direction. In fact, the backward 
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computation is as important as the forward computation on this model, being 
an important and interesting characteristic to be modeled. 

The given Backpropagation equations presented here are from Freeman, 1992. 

2.4.2 The Combinatorial Neural Model 

The Combinatorial Neural Model (Machado and Rocha 1989, 1992; Machado et al. 
1998) has been explored and developed during the past decade. Experiments with this model 
have demonstrated that it is well suited for classification problems, with excellent results in 
terms of accuracy (Leão and Rocha 1990; Feldens and Castilho 1997). The CNM integrates, 
in a straightforward architecture, symbolic and non-symbolic knowledge. This model has 
characteristics that are desirable in a classification system: 

• Simplicity of neural learning - due to the neural network�s generalization 
capacity. 

• Explanation capacity � the model can map a neural network�s knowledge into a 
symbolic representation. 

• High-speed training - only one pass over the training examples is required. 

• Immunity against some common neural network�s pitfalls � i.e. local optima, 
plateau, etc. 

• Incremental learning possibility - previously learned knowledge can be 
improved with new cases. 

• Flexible uncertainty handling � it can accept fuzzy inputs, probabilistic inputs, 
etc, as inputs fall into the interval [0, 1].  

The CNM includes mapping of previous knowledge to the neural network, training 
algorithms, and pruning criteria, in order to extract only significant pieces of knowledge. The 
detailed explanations on the possible learning algorithms are in (Machado et al. 1998). Here 
are considered the Starter Reward and Punishment (SRP) and the Incremental Reward and 
Punishment (IRP) learning algorithms, which are the original learning algorithms proposed for 
the model. Those learning algorithms offer the possibility of building a CNM network based 
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on knowledge elicited from an expert (using SRP), and the possibility of refinement with new 
examples the knowledge existing in the network (using IRP). 

Learning Algorithm

?

Output Neurons (hypotheses)

Output Neurons (hypotheses)

Input Neurons (findings)

Combinatorial Neurons

Input Neurons (findings)

 

Figure 2.11 � The CNM network generation 

The CNM is a 1-hidden layer, feed-forward network. It has particular characteristics in 
the way the topology is constructed, in neurons, in the connections among neurons, and in its 
training algorithm. 

The domain knowledge is mapped to the network through evidences and hypotheses 
(Figure 2.11). The evidence may have many distinct values that must be evaluated separately 
by the neural network, called findings. The input layer represents the defined set of findings 
(also called literals). A finding can be a categorical or numeric pattern feature. The categorical 
feature can only take on a finite number of values while a numeric feature may take on any 
value from a certain real domain. A categorical feature requires at most one input neuron for 
each of the feature possible values. The state of each such neuron is either zero or one. A 
numeric feature has to be partitioned in fuzzy sets where each set will correspond to an input 
neuron and its state will correspond to the fuzzy set degree of membership. An example: if an 
evidence age is modeled, it probably has findings that can be modeled as fuzzy intervals 
(Kosko, 1992). The domain expert defines fuzzy sets for different ages (e.g. child, adolescent, 
adult, senior) (Figure 2.12). Each fuzzy set defined will correspond to a finding and, as a 
consequence, to a CNM input neuron.  



University of Constance 

Computer & Information Science 

 

 

Software Research Laboratory 
A Component Architecture for 
Artificial Neural Networks 
Fábio Ghignatti Beckenkamp 
June 2002 
Page 48 

 

 
Fuzzy 
Value 

Fuzzy   Set 0 

1 

youth adult 

12       16 19    

child
0.3 

0.6 
senior 

50           
 

Figure 2.12 - Fuzzy Sets 

In this case each input value is in the [0,1] interval (fuzzy set membership functions), 
indicating the pertinence of the training example to a certain concept, or the degree of 
confidence. In the example of Figure 2.12, the age 19 will correspond to a zero membership 
value for the child and senior fuzzy sets and to a 0.6 value for the adolescent fuzzy set and 
0.3 to the adult fuzzy set. 

The intermediate (combinatorial) layer is automatically generated. A neuron is added to 
this layer for each possible combination of evidences, from order 1 to a maximum order, 
given by the user.  

The output layer corresponds to the possible classes (hypotheses) to which an example 
could belong. Combinatorial neurons behave as conjunctions of findings that lead to a certain 
class. For that reason, the pth combinatorial neuron propagates input values according to a 
fuzzy AND operator (Equation 2.22), taking as its output the minimum value received by the 
inputs.  

)(min iip
p

xs
Ii ∈

 

Equation 2.22 � Fuzzy AND 

In Equation 2.22 above, },...,1{ nI p ⊆  indicates the appropriate input neurons, and 
either iiip xxs =)(  or iiip xxs −=1)(  (fuzzy negation). In the first case the synapse (i,p) is 

called excitatory and in the later case inhibitory. 

Output neurons group the classification hypotheses implementing a fuzzy OR operator 
(Equation 2.23), propagating the maximum value received by its inputs.  
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Equation 2.23 � Fuzzy OR 

In Equation 2.23 above, m indicates the number of output neurons, and ]1,0[∈pw  is 

the weight associated with the connection from the pth combinatorial neuron to the output 
neuron. 

The weights modifications are determined by using a supervised algorithm which 
attempts to minimize the mean square error (Equation 2.24) incurred by the network when 
presented with a set of examples.  

∑
∈

−=
Ee

eywey
E

wmse 2)](ˆ),([
1

)(  

Equation 2.24 � Mean Square Error calculation for the new weight set of values 

In Equation 2.24 above, w is the weight vector of a CNM network, and the learning is 
done using a set of examples nE ]1,0[⊂ . For an example Ee ∈ , let )(ˆ ey  denote the desired 

output, and y(e,w) the output generated by the network with the weight vector w.  

The Incremental Reward and Punishment (IRP) and the Starter Reward and 
Punishment (SRP) learning algorithms are based on the concept of rewards and punishments. 
The connections between neurons (synapses) have weights and also pairs of accumulators for 
punishment (Pp) and reward (Rp). Before the training process, in absence of previous 
knowledge, all weights are set to one and all accumulators to zero. During the training, as 
each example is presented and propagated, all links that led to the proper classification have 
their reward accumulators incremented. Similarly, misclassifications increment the 
punishment accumulators of the path that led to wrong outputs. Weights remain unchanged 
during the training process, only accumulators are incremented.  

The training process is generally done in one pass over the training examples. At the 
end of this sequential pass, the connections that had more punishments than rewards are 
pruned. The remaining connections have their weights changed using the accumulators.  
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2.4.2.1 The IRP learning 

The IRP is used when the CNM neural network already exists and the goal is to add 
new knowledge to the network by learning new examples. In the case of the IRP, the learning 
proceeds as following.  

If for a weight vector w, an example Ee ∈ yields y(e,w) > )(ˆ ey , then every pathway p 

(connection among a combinatorial neuron and an output neuron), in the network is 
rewarded proportionally to: 

• The response of the network, y(e,w); 

• The absolute value of the error, )(ˆ),( eywey − ; 

• The signal injected by p into the output neuron, ))((min exsw iip
p

p
Ii ∈

. 

On the other hand, when y(e,w) < )(ˆ ey  each pathway of the network is punished in the 

same way. 

At the end of each learning iteration, the synapses with the Rp < Pp are deleted 
(pruned), and for the others, the accumulators are used to recalculate the value of wp. The 
remaining pathways with Rp > 0 and Pp = 0 (pathognomonic pathways) have their weights 
updated based on Equation 2.25: 

)(max
)1(

1

qq

p
p PR

R
ttw

mq

−
−+=

≤≤  

Equation 2.25 � Pathognomonic pathway weight update 

The constant t is an arbitrary acceptance threshold and ( ]1,0∈t . The other remaining 

pathways (ordinary pathways), have their weights updated based on Equation 2.26: 

)(max

1
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Equation 2.26 � Ordinary pathway weight update 
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At the end of the iteration, the values of Rp and Pp are passed on to the next iteration, 
enabling the incremental learning capability. 

2.4.2.2 The SRP learning 

The SRP learning applies the same general principle of rewards and punishments of the 
IRP learning in a one-iteration procedure. Before applying the SRP, the accumulators are set 
to zero and the weights are set to one. All the data examples are then applied to the network 
in a one-iteration procedure promoting the changes of the reward and punishment 
accumulators. After applying all examples, the same weight updates used on IRP are applied: 
the non-rewarded pathways are pruned and the others have their weights modified by 
Equations 2.25 and 2.26 above. The SRP is the starting point for the CNM learning. After its 
application, the IRP can be used to increment the CNM knowledge. 

Important aspects to consider on the object model for the CNM are: 

• The input neurons just bypass the information. Usually this information is 
normalized values among 0 and 1, resulting from a pre-processing of the input 
data.  

• The combinatorial neurons implement the fuzzy AND function and the output 
neurons operate the fuzzy OR function.  

• The connections among the neurons are feedforward, there are no feedback 
connections and the network is not fully connected.  

• The number of input and output neurons is determined based on the domain 
knowledge the expert has, and the combinatorial neurons are created as the 
possible combinations, from zero to a given order number (typically 3), of the 
input neurons. The generation of the combinatorial layer may demand 
enormous memory footprint to be able to generate the neurons and synapses to 
all necessary combinations. 

• The CNM synapses have reward and punishment accumulators that are used to 
decide whether the synapse must be pruned or not, and also to recalculate the 
new value for the synaptic weight. 
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2.4.3 The Self-Organizing Feature Maps 

This kind of neural network is inspired on the brain�s cortical structure. The different 
sensory inputs like visual or acoustic are mapped in different areas of the cerebral cortex in a 
topologically ordered manner. The Kohonen Self-Organizing Feature Map (SOM) (Kohonen, 
1990) was built to operate in an analog way. The network is based on a usually two-
dimensional lattice structure. The learning is competitive where the neurons are selectively 
tuned to various input patterns (vectors) or classes. The different input features force the 
locations of the winning neurons to be ordered in respect to each other in a meaningful way, 
so that the different features are mapped to different regions of the lattice. The spatial 
locations of the neurons correspond to the features given in the input patterns.  

An important characteristic of the SOM neural network is the presence of lateral 
feedback in the learning process. The lateral feedback is a special form of feedback that is 
dependent on lateral distance from the point of its application. The lattice network has 
�imaginary� lateral connections among the neurons. The neuron on the map that best fits the 
feature of the pattern being presented to the network is considered the network winner. The 
neurons that are located around the winner neuron shall receive excitatory or inhibitory 
effects depending on the distance of the winner neuron through the lateral connections. This 
effect is due to the called bubble activity the network tends to have by concentrating the 
electrical activity into local clusters. Exciting or inhibiting the neurons around the winner 
forms the feature clusters. Typically the Gaussian function shown in Figure 2.3(e) (Activation 
functions) is used to describe the lateral feedback. 

The Kohonen SOM neural model basic functionality can be described as follows: 

• The input of the network can be of any dimensionality while a one or two-
dimensional lattice of neurons is responsible for computing simple discriminant 
functions of the input. 

• A mechanism compares these discriminant functions and selects the neuron 
with the largest discriminant function value. 

• The selected neuron and its neighbors are activated simultaneously. 

• An adaptive function increases the discriminant function values of the selected 
neurons in relation to the input signal. 
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The Kohonen SOM neural network structure can be seen in Figure 2.8 (Lattice 
network) that shows the lattice architecture or in Figure 2.13 below. Figure 2.13 tries to show 
that the SOM network is fully connected, all neurons on the input layer are connected to all 
neurons on the output (lattice) layer. It shows also the connections among the neurons on 
the output layer that will be responsible for the lateral feedback.  

The number of input neurons is determined by the size of the input vector. The input 
vector represents the data pattern and can be of any dimensionality. The output map of 
neurons may have the dimensionality augmented to three, but the two-dimensional map is 
the most frequently used. 

The first step on the SOM learning is to find the winner neuron or the neuron that best 
matches a certain criterion. The winner neuron will determine the location of the activation 
bubble on the map. The network connections are initialized with random values so that no 
representation is given on the map at the beginning. 

... ... ... ... ...

Two-dimensional lattice of output neurons

Connections among input and output neurons

Input neurons  

Figure 2.13 � Kohonen SOM 

When the input pattern is applied to the SOM input, the values are propagated to all 
neurons on the lattice layer. The lattice layer can compute the arriving input signals by simply 
calculating the inner product to all output neurons. Considering that the threshold is the same 
for all the output neurons, the output neuron that produces the largest inner product is the 
one that best fits to the pattern and is selected as the winner. A second form of best-
matching is to use the minimum Euclidean distance between the vectors formed by the input 
signal and the weights at the arriving connections of each output neuron. In this case, the 
input vector and the network weights shall be normalized to constant Euclidean norm 
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(length). Equation 2.27 shows how to calculate the winner neuron i for a given input vector x 
using the minimum Euclidean distance. 

jj wxxi −= minarg)(  

Equation 2.27 � Winner neuron calculation using the minimum Euclidean distance 

In Equation 2.27 above, x is the learning vector and wj is the vector formed by the 
connections weights among the input nodes and the output neuron with index j.  

The Euclidean distance for a given output neuron with index j can be given by 
Equation 2.28 below, where p is the number of input neurons, wj,i is the weight of the 
connection among the jth output neurons and the ith input neuron, and xi is the input value 
applied to the ith input neuron. 

∑
=

−=−
p

i
ijij wxwx

1

2
, )(  

Equation 2.28 � Euclidean distance 

The topology of the lattice determines the neurons that are the neighbors of the winner 
neuron i. The weights of the connections to the winner neuron are to be rewarded by being 
this neuron the best matching to the given input. The neighbor neurons also shall receive 
some sort of reward forming the activation bubble together with the winner. By the lateral 
feedback connections, the neighbor neurons will be adapted to the given input. Let the lateral 
distance of the neuron j from the winning neuron i be denoted by dj,i. The amplitude of the 
topological neighborhood centered on the winner neuron i is denoted by ij ,π . 

Typically the neighborhood function is given by the Gaussian-type function shown in 
Equation 2.29. 
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Equation 2.29 � Gaussian-type function for the topological neighborhood 

The parameter σ at Equation 2.29 is the efective width (variance) of the topological 
neighborhood. The topological neighborhood ij ,π is maximum at the winning neuron (dj,i = 



University of Constance 

Computer & Information Science 

 

 

Software Research Laboratory 
A Component Architecture for 
Artificial Neural Networks 
Fábio Ghignatti Beckenkamp 
June 2002 
Page 55 

 

0). The amplitude of the topological neighborhood decreases with increasing lateral distance 
dj,i , decaying to zero for ∞→ijd , . 

The update of the synaptic weight vector wj of neuron j at lateral distance dj,i from the 
winning neuron i(x) is given by Equation 2.30 below, where n denotes the discrete time and η 

is the learning-rate parameter of the algorithm.  

)]()()[()()()1( )(, nwnxnnnwnw jxijjj −+=+ πη  

Equation 2.30 � Weight update function 

The time-dependent learning-rate parameter η(n) used to update the synaptic weight 
vector wj(n) shall be time-varying. During the first 1000 iterations it shall assume a value near 
to the unity and be decreased gradually until a value above 0.1. The width of the topological 
neighborhood σ(n) shall also decrease slowly during the learning process. Typically, the 
function used for the calculation of both parameters is the exponential decay, described at 
Equations 2.31 and 2.32. 
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Equation 2.31 � Learning-rate parameter update 
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Equation 2.32 � Topological neighborhood parameter update 

In Equations 2.31 and 2.32 above, the values σ0 and η0 are respective values of σ(n) 
and η(n) at the initiation of the algorithm (n=0). The values τ1 and τ2 are the time constants 
for the parameters η and σ  respectively. Equations 2.31 and 2.32 shall be used only during 
the ordering phase, the first 1000 iterations or so, after that a small value shall be used for 
many iterations. 

Important aspects to consider on the object model for the SOM are: 
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• The input nodes just bypass the information. Usually this information is 
normalized values among 0 and 1, resulting from a pre-processing of the input 
data.  

• The output neurons implement the Euclidean distance to find out its activation 
value. 

• The connections among the neurons of the input and output layers are 
feedforward and fully connected, there are feedback connections among the 
neurons of the output layer. The lateral feedback is a novel characteristic in 
relation to the previous models seen so far. There is no hidden layer. 

• The number of input neurons is determined by the expert based on the domain 
to apply the model. The number of output neurons is also determined 
empirically and is typically a two-dimensional map. 

• The activation bubbles form the chunks of knowledge about the problem being 
treated by the network. Each chunk tends to map an input feature. 

The given SOM equations presented here are from the Haykin, 1994. 

2.4.4 The Adaptive Resonance Theory 

The Adaptive Resonance Theory (ART) was proposed by (Grossberg, 1976;  
Grossberg, 1987). When proposing the ART model, Grossberg attempted to solve what he 
called the stability-plasticity dilemma. This dilemma is concerned with the neural network 
capacities of generalization (stability) and discrimination (plasticity). The stability property is 
responsible for the neural network capability of grouping similar patterns in the same 
category. The plasticity is the network capacity of creating new categories when new patterns 
are presented. The dilemma lives in the difficulty of having a neural model that is able to 
develop the two capabilities at the same time. It means the network shall: remain adaptive 
(plastic) in response to relevant input, yet remain stable in response to irrelevant input; know 
to switch between its plastic and its stable modes; retain its previously learned information 
while continuing to learn new information. 

Regarding the stability and plasticity properties of the ART model Grossberg stated: 
�An ART system can adaptively switch between its stable and plastic modes. It is capable of 
plasticity in order to learn about significant new events, yet it can also remain stable in 
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response to irrelevant events. In order to make this distinction an ART system is sensitive to 
novelty. It is capable, without a teacher, of distinguishing between familiar and unfamiliar 
events, as well as between expected and unexpected events.� (Grossberg, 1987) 

Grossberg introduced a feedback mechanism between the competitive and the input 
layers of the network to cope with the stability-plasticity dilemma. This feedback mechanism 
controls the learning in a way that new information is learned without destroying old 
information. Several models were derived from the Adaptive Resonance Theory (Grossberg, 
1987; Carpenter and Grossberg, 1987; Carpenter and Grossberg, 1992): 

• ART1 � Is characterized by using only binary input. 

• ART2 � Is able to process analog input. 

• ART3 � Considers the action of the neurotransmitters on its synaptic 
mechanisms. 

• Fuzzy ART � Implements fuzzy concepts in ART1 architecture. 

• ARTMAP � Predictive architecture based on two ART modules. 

• Fuzzy ARTMAP - Predictive architecture based on two Fuzzy ART modules. 

The name �resonant� on the model comes from physics where the resonance occurs 
when a small-amplitude vibration of the proper frequency causes a large-amplitude vibration 
in a mechanical or electrical system. In the ART network, the signals reverberate back and 
forth between neurons of the input and competitive layers. In this process, the network tries 
to stabilize by developing the proper pattern. If it does so, a stable oscillation ensues, which is 
the neural network equivalent of resonance. During the resonant period the learning or 
adaptation occurs. Before the network has achieved the resonant state no learning occurs. 

If a completely new pattern is presented to the ART network, it first tries to find on its 
internal representations the matching for the pattern. If the network does not find one, it 
enters in a resonant state in order to develop a new internal representation for the pattern. If 
the network has previously learned to recognize a pattern, then it will quickly enter in 
resonance and will reinforce the previously created internal representation. 
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In the ART model, two subsystems interact in the processing of the input patterns: the 
attention subsystem and the orientation subsystem. The attention subsystem is responsible 
for the processing of familiar input patterns, establishing responses and precise internal 
representations for those patterns. The orientation subsystem copes with the unknown 
patterns, resetting the attention subsystem when such patterns are presented to the network. 

An important role performed by the ART systems is to distinguish in a certain set of 
patterns what is signal and what is noise. To turn this possible, the context of the patterns 
was considered on the ART definition. Certain characteristics can be considered as noise 
when presented in certain patterns and considered as important signal feature for other 
patterns. The relevant information that shall be distinguished is called critical feature patterns, or 
prototypes and represent invariants of the set of all experienced input patterns. As the 
learning process takes place, new equilibrium points are formed as the system discovers and 
learns the critical features. The learned features are stabilized by internal mechanisms that 
internally control the learned features and avoid possible sources of system instability. 

Next, one model was picked from the ART family to be implemented in this work. The 
fourth model to be implemented is the ART1. The implementation of this ART model shall 
prove the capacity of the designed ANN framework to cope with feedback connections. 
Having this first ART model implemented, it is then easier to go for the implementation of 
the several other models of the ART family.  

2.4.4.1 The ART1 

In the ART architecture (Figure 2.14), two distinct processes occur when an input 
pattern is applied. The bottom-up process, also known as the adaptive filter or process of 
contrast enhancement, that produces the Y pattern, and the top-down process, that realizes a 
similarity operation to produce the pattern X*. 

Given a set of input patterns, a certain pattern belonging to this set is represented by I. 
When pattern I enters F1 (attention subsystem), it is then called pattern X (I and X are then 
identical). The neurons activated by the pattern X in F1 generate output signals that flow 
through the connections F1→ F2 (long-term-memory). This process produces pattern Y on 
layer F2. This pattern Y is the result of a winner-take-all process where only one neuron in F2 
can be the winner (the one with bigger activation). Only the winner neuron produces the 
value 1 on its output, the other neurons on the same layer produce 0. Here the bottom-up 
process finishes and the top-down process starts. 
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Figure 2.14 � ART1 Architecture 

From the winner neuron a top-down pattern is produced through the F2→ F1 
connections (feedback connections). This new signal is called pattern V. Now, there are two 
stimulation sources for the input layer F1: the input pattern I and the feedback pattern V. 
Together they give origin on F1 to pattern X* that is typically different from pattern X. 
Pattern X* indicates the similarity level between the input pattern and the stored prototype 
on the connection among layers F2 and F1. The similarity process among those patterns can 
be simply the function AND (∩), or another similarity measure. 

It is then necessary to decide whether the input pattern must be stabilized on the 
winner neuron or another neuron should be used. To verify the level of similarity represented 
on X* it is necessary to define a rule that considers both X* and I. It is possible to consider 
several different rules for accepting or rejecting the stabilization. This rule is called the reset rule 
and Inequality 2.33 commonly defines it. 

 

ρ≥=
∩

I

X

I
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Inequality 2.33 � Reset rule 
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In the Inequality 2.33, ρ is the vigilance parameter that can assume values between 0 and 1, 
|X*| is the number of ones in the pattern X*, and | I | is the number of ones in the pattern 
I. If the result of this equation is true, the winner neuron is considered stable. Otherwise, it 
will not be considered by the orientation subsystem A, and the search for a stable pattern will 
continue. If no neuron is accepted as stable, then a neuron that is not used to any input 
pattern is then selected to learn this new input pattern. After choosing a stable pattern, the 
network learns the input pattern by adaptation of the bottom-up and top-down connections. 

The 2/3 rule 

Figure 2.15 shows the application of the 2/3 rule. There are situations when the 
neurons on the F1 layer must be deactivated, i.e., not producing output signals. For example, 
the neurons on F1 do not have to generate outputs when excited only by the pattern V, but 
must be able to generate output when excited by the input pattern I. A mechanism called gain 
control (B) is implemented on the network to control such a situation. When F2 is active, 
excitatory signals to F1 are generated (pattern be V) and at the same time the gain control is 
inhibited (Figure 2.15(a)). The rule that controls layer F1 is called 2/3 rule and says that: two 
of the three signal sources available in F1 (input pattern I, top-down pattern V, and the gain 
control pattern B), are necessary to activate the F1 layer neurons producing an output 
pattern. These outputs from the neurons on the F1 layer are called supraliminal signals. During 
the button-up process, F1 receives an input that is the pattern I and an excitatory signal from 
the gain control, turning possible then the generation of the supraliminal signals (Figure 
2.15(b)). During the similarity process of the top-down and bottom-up patterns, also 
supraliminal signals are generated (Figure 2.15(c)). Neurons that receive one bottom-up or 
one top-down input, not both, cannot generate the supraliminal signals. 
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Figure 2.15 � The 2/3 rule 

Learning on ART1 

There are two ways of doing the learning on ART1: the slow and the fast learning. The 
slow learning allows for only a small amount of the input pattern to be represented by the 
weights. After repetitive presentations of the entire set of learning examples, the most 
important features of each pattern are captured by the LTM (long term memory). This form 
of learning is well suited to problems with high dimensionality, subject to learning sets with 
huge amounts of noise. The fast learning quickly encodes the input pattern features on the 
weights. This encoding typically is done in a one-shot-learning, which means, each input 
pattern of the learning set is presented to the network only once and the network is able to 
learn the pattern features. The fast learning is recommended to learning sets free of noise and 
when the learning must be done immediately. 

Slow learning 

The equations for the slow learning at the LTM and the STM (short-term-memory) 
described in (Carpenter and Grossberg, 1887) are as follows: 

STM Equations 
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Equation 2.34 gives dynamic equation for calculating the activation of the STM xk of 
any neuron vk in F1 and F2.  

−+ +−−+−= kkkkkk JCxBJAxxx
dt

d
)()1(ε  

Equation 2.34 � STM activation 

In Equation 2.34 above, +
kJ  is the total excitatory input to vk , 

−
kJ  is the total inhibitory 

input to vk , and all parameters are positive. Parameter A controls the bottom-up and top-
down signals, while B and C regulate the gain control. If A > 0 and C > 0, then the STM 
activity xk(t) remains within the finite interval [-BC-1, A-1], regardless of the values of +

kJ  and 
−
kJ .  

The neurons on F1 are called vi, where i = 1,2,�M. The F2 neurons are called vj, where j 
= M+1,M+2,�N. Thus Equation 2.34 above turns to be Equation 2.35 below for the 
neurons on the F1:  

−+ +−−+−= iiiiii JxCBJxAxx
dt

d
)()1( 111ε  

Equation 2.35 � STM for neurons on the F1 

Similarly, Equation 2.34 above turns to be Equation 2.36 below for the neurons on the 
F2:  

−+ +−−+−= jjjjjj JxCBJxAxx
dt

d
)()1( 222ε  

Equation 2.36 � STM for neurons on the F2 

For a discrete calculation of F1 an input vector Ii is applied and the activities are 
calculated according to Equation 2.37 below: 

111
1 )(1 CBIA

I
x

i

i
i +++
=  

Equation 2.37 � Activities for the neurons on the F1 
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The +
kJ  input of the ith neuron vi in F1 is a sum of the bottom-up input Ii and the top-

down input pattern Vi , represented by Equation 2.38 below: 

iii VIJ +=+  

Equation 2.38 � F1 input  

The top-down input pattern Vi is given by Equation 2.39 below:  

∑=
j

jiji zxfDV )(1  

Equation 2.39 � Top-down input pattern Vi 

The f(x) on Equation 2.38 above is the signal generated by activity xj of vj , and zji is the 
LTM trace in the top-down connection from vj of vi . In the notation of Figure 2.14 (ART1 
Architecture), the input pattern I = (I1, I2,�,IM), the signal pattern U = (f(xM+1), f(xM+2),�, 
f(xN)), and the template pattern V = (V1,V2,�,VM). 

The inhibitory input −
iJ  governs the attentional gain control signal and is calculated by 

Equation 2.40: 

∑=−

j
ji xfJ )(  

Equation 2.40 � F1 attentional gain control  

Thus −
iJ  = 0 if and only if F2 is inactive. When F2 is active, −

iJ  > 0 and hence term 
−
iJ  in Equation 2.35 (STM for neurons on the F1) has a nonspecific inhibitory effect on all 

the STM activities xj of F1.  

The inputs and parameters of STM activities in F2 are chosen so that the F2 neuron that 
receives the largest input from F1 wins the competition for the STM activity (winner-take-all).  

The inputs +
jJ  and −

jJ  to the F2 neuron vj have the form given in Equations 2.41 and 

2.42 respectively:  

jjj TxgJ +=+ )(  

Equation 2.41 � F2 input  
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∑
≠

− =
jk

kj xgJ )(  

Equation 2.42 � F2 attentional gain control  

 

Input +
jJ  adds a positive feedback signal g(xj) from vj to itself to the bottom-up 

adaptive filter input Tj given by Equation 2.43 below:  

∑=
i

ijij zxhDT )(2  

Equation 2.43 � Bottom-up adaptive filter input Tj 

The h(xj) is the signal emitted by the F1 neuron vi and zij is the LTM trace in the 
connection from vi to vj . Input −

jJ  adds up negative feedback signals g(xk) from all the other 

nodes in F2. 

In the notation of Figure 2.14 (ART1 Architecture), the output pattern S = (h(x1), 
h(x2),�, h(xM)), and the input pattern T = (TM+1 ,TM+2,�, TN). 

LTM Equations 

The LTM value for the bottom-up connection from vi and vj follows Equation 2.44: 

])()[(1 ijijijij zExhxfKz
dt

d −=  

Equation 2.44 � LTM for bottom-up connections 

Similarly, the LTM value for the top-down connection from vj and vi follows Equation 
2.45: 

 
] ) ( )[ ( 2 ji ji i j ji z E x h x f K z 

dt 

d − =  

Equation 2.45 � LTM for top-down connections 

On Equations 2.44 and 2.45 above, K1 and K2 are positive constants that control the 
learning rate, Eij and Eji are positive constants that control the decay rule (see Carpenter and 
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Grossberg, 1987), zij is the value for the connection from vj to vj , and zji is the value for the 
connection from vj to vi. The threshold function h(xi) applied in the F1 neurons is the sigmoid. 
The term f(xj) is a postsynaptic sampling, or learning, signal because f(xj) = 0 implies 

0=ijz
dt

d . The term f(xj) is also the output signals of vj to connections from vj to F1 , as in 

Equation 2.39 (Top-down input pattern Vi). 

For the top-down connection, the simplest choice for the values of K2 and Eji is to 
make both equal to 1. For the bottom-up connection a more complex choice of determining 
Eij is made. This choice considers the Weber Law Rule (Carpenter and Grossberg, 1987). 
This rule requires that positive bottom-up LTM values learned during the encoding of an F1 
pattern X, with a smaller number | X | of active neurons, be larger than the LTM values 
learned during the encoding of an F1 pattern with a larger number of active nodes. At least 
those values shall be similar. Thus, the Weber rule ensures that input patterns I1 that are 
subsets of other input patterns I2 activate its own features. 

Fast Learning 

For the fast learning to work properly, the bottom-up and top-down connections must 
be properly initialized. It is necessary to ensure that the encoded patterns are alwa2ys 
properly accessed. The bottom-up connections zij from vi to vj shall follow initialization 
conditions called Direct Access Inequality, defined in Inequality 2.46: 

)1(
0

nL

L
zij +−

<<  

Inequality 2.46 � Direct Access Inequality 

In Inequality 2.46 above, the constant L is bigger than 1 and typically is equal to 2, and 
n is the number of neurons in F1. This value is very critic because if it is too large, the 
network may allocate all the neurons of the F2 for a unique input pattern. 

The initial conditions for the values of the top-down connections zji from vj to vi shall 
follow the Template Learning Inequality defined in Inequality 2.47 below: 

1
1

1

1 ≤<
−

jiZ
D

B

 

Inequality 2.47 � Template Learning Inequality 
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It is suggested that zji be initialized with 1. 

The following Equation 2.48 gives the codification of the LTM bottom-up 
connections: 

 

 
 

 

 
 

 

 

= 

= = 

= = 
+ − 

= 

0 

1 0 0 

1 
|) | 1 ( 

j ij 

j i 

j i 

ij 
v if z 

v and v if 

v v if 
X L 

L 

z  

Equation 2.48 � Bottom-up codification 

In Equation 2.48 above, |X| is the number of components in vector X. There is no 
modification in zij when vj in F2 is inactive. 

Similarly, the following Equation 2.49 gives the codification of the LTM top-down 
connections: 

 

 
 

 
 

 

= 

= = 

= = 

= 

0 

1 0 0 

1 1 

j ji 

j i 

j i 

ji 
v if z 

v and v if 

v v if 

z  

Equation 2.49 � Top-down codification 

There is no modification in zji when vj in F2 is inactive. 

Important aspects to consider on the object model for the ART are the following: 

• The input nodes do not simple bypass the information as in the models seen so 
far. The input nodes have to cope with feedback information coming from the 
competitive layer. 

• There are special equations for the processing of the neurons of both input and 
competitive layers.  

• There are feedforward and feedback connections among neurons of the input 
and competitive layers. The layers are fully connected. The feedforward and 
feedback connections process the signals traveling on them. 
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• There is lateral feedback connection among the neurons of the competitive 
layer similarly to what happens to the competitive layer of the SOM model. 

• The number of input neurons is determined by the expert based on the domain 
to apply the model. The number of output neurons is also determined 
empirically.  

• The input values can be binary, analog or even fuzzy depending on the ART 
model implemented. 

• There are connections among the neurons of the input and competitive layers, 
and also connections between the layers and the control mechanisms of the 
network that can be seen as special neurons drawn in Figure 2.14 (ART1 
Architecture). 

2.5 Software Engineering issues 

This section introduces Software Engineering concepts that are relevant to the realm of 
the thesis. The goal here is not to extensively discuss these concepts, but only to put them 
together in a way that makes clear the engineering principles that form the basis of this work. 

2.5.1 Software Quality 

Software quality is the final objective of software engineering. A high quality software 
system is more stable, has fewer bugs, is easier to understand, maintain and extend, and 
attend user�s needs in functional and efficiency terms.  (Pree, 1995) 

Software quality may be achieved through careful planning, design, implementation and 
testing. Each of these phases is expensive and time-consuming. So how can increasingly 
complex software be delivered in time and with the expected quality? The answer is: through 
reuse of well-defined, well-designed and well-tested units of software.  

In order to achieve effective software reuse, the software must have some capability to 
adapt to a variety of situations. This aspect of software flexibility is one of the keys to high 
quality software. Flexible software is not only more reusable, it is also more easily maintained 
and extended as it was built with change in mind. Programming including flexible points in 
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the software can sometimes increase the costs of initial development, but often this cost is 
amortized if the system needs to be adapted or extended.  

2.5.2 Flexible software 

To create a flexible piece of software, one must be able to spot which parts of the 
system are more likely to change, and which technique can be used more effectively in that 
situation. There are a variety of techniques. Some of them can be applied to different 
languages and methodologies, some only work in specific environments (e.g. object-oriented 
frameworks). This section sketches a selection of these techniques, with emphasis on the 
framework-based ones. 

2.5.2.1 Flexibility based on data  

The Von Neumann model, which most computing systems follow nowadays, states 
that programs and data share the same memory space. That view of the program as data leads 
to the duality of programs and data that �means that one program can process another as 
input. The output data could be a transformed program� (Pree, 1991). Using the duality 
concept, it is possible to make flexible software whose behavior can change based on the 
inputs that the software receives. This kind of flexibility requires no recompilation, no access 
to the software source code and can be implemented in virtually any language. Two ways of 
data-based flexibility can be cited: 

Resources 

The data that will be interpreted is stored in resource files. The kind of customization 
that can be done in this way ranges from simple data entry for a calculation program, up to 
complex workflow definition or graphic user interface customizations. In the latter cases, the 
resource files are often edited using special customization tools or editors.  

For instance, a typical use of resource bundles is the internationalization of the GUI. 
The different words and sentences that form the GUI are stored in different resource 
bundles and loaded at runtime in order to build the user interface according to the user�s 
preferences, in this case according to the particular language. 

Scripting languages 

Another kind of program that can be stored as data is a script. Although a script file 
can be viewed as a kind of resource file, it deserves a distinction because of some unique 
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characteristics. An explicit interpreter module that is not strongly coupled with the rest of the 
application usually processes a script. A script language is the set of rules that describe 
whether a resource is valid, and what actions are to be taken for each command the script 
contains. 

An example of scripting usage is the JavaScript that has been broadly used to bring 
interactivity to the Web application. It is used for creating live online applications that link 
together objects and resources on both clients and servers. JavaScript was designed for use by 
HTML page authors and enterprise application developers to dynamically script the behavior 
of objects running on either the client or the server. 
(http://java.sun.com/pr/1995/12/pr951204-03.html) 

Microsoft�s counterpart is VBScript, which offers active scripting to various 
environments, such as Web client scripting in Microsoft Internet Explorer and Web server 
scripting in Microsoft Internet Information Service. 
(http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/script56/html/vbswhat.asp) 

2.5.2.2 State of the art programming concepts 

Some of the techniques to achieve reusability and flexibility are based on language or 
paradigm specific features. This section explains some of them and shows some of their 
inherent advantages and disadvantages. 

Class Libraries 

Class libraries are probably the most common technique for making reuse happen, as 
virtually every object-oriented language has one or more. Their main goal is re-usability, so 
the flexibility of each subset of classes must be maximized. Ordinary class libraries don�t 
provide any application structure. An example is the Java language API with libraries such as: 
swing (GUI), io, lang, math, etc.  

Components 

Szyperski (1998) defined software component as: 

�A unit of composition with contractually specified interfaces and explicit context 
dependencies only. A software component can be deployed independently and is subject to 
composition by third parties.� 
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The definition brings the attention to the core properties of a component such as: 
independence, contractual interfaces, composition with third-parties and deployment. The 
component shall be a unit of independent deployment. They are built to be used by different 
systems that need the functionality implemented by the component. A component shall not 
be dependent on other components or environments. Components are called units because 
they cannot be deployed partially and the third party is not expected to have access to a 
component�s details. 

The component contractual interface allows its composition with third-party 
components given that they match and that the interfaces are well documented. A 
component has to encapsulate its implementation and interact with the environment through 
well-defined interfaces. 

Therefore the component properties are (Szyperski, 1998): 

• The component is a unit of independent deployment. 

• The component is a unit of third-party composition. 

• The component has no persistent state. 

Components can correspond to objects and their classes. However, there is no need for 
a component to be a class or consist of classes. The fact that components are used in 
software development does not directly imply that the resulting software is of high quality or 
has higher flexibility. The whole architecture must be consistent and the components must 
themselves have a sound structure and be flexible enough to attend the needs of that 
particular application. Like class libraries, the components tend to provide flexible, easy to 
use software, without imposing any specific application structure. The main advantage over 
simple class libraries is the higher level of encapsulation that is achieved. 

Components require a standard for connecting them. There are currently three 
standards: CORBA, COM and JavaBeans. Each of these standards has its specific interfaces, 
services, platform dependencies, etc. For an extensive study and comparison the book by 
Szyperski (1998) is recommended.  

Frameworks 
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A component that can fit the definition of well-defined, well-designed and well-tested 
units of software is the framework. Following, (Gamma et al. 1995) defined a framework as �a 
set of cooperating classes that make up a reusable design for a specific class of software�. 
That definition regards frameworks as large pieces of software, with as many responsibilities 
as the whole application class for which it was built may have. Defining frameworks as above 
limits their overall usability, because it is unlikely that two or more large, complex sets of 
classes can be combined together without a significant effort to bridge them. 

A less constrict and perhaps more useful definition can be found at (Wirfs-Brock and 
Johnson, 1990). It states, �A framework is a collection of abstract and concrete classes and 
the interface between them, is the design for a subsystem�. This definition allows more reuse 
by allowing different modules, each of which is responsible for a related set of tasks.  

But also this concept has some limitations when they have to be combined, as the 
designs of the different subsystems may not be fully compatible. Often a framework assumes 
that it has the main control of an application. Two or more frameworks making this 
assumption are difficult to combine without breaking their integrity. (Pree and Koskimies, 
1999) 

Frameworks predefine an architecture for the application, so they encapsulate part of 
the design, as well as part of the code. Frameworks also cause the code to suffer an 
�inversion of control�, as the framework is responsible for the control flow instead of the 
application. Examples of framework are: ET++ application framework (Weinand et. al. 
1989) and many of the Java libraries. 

White-box frameworks 

Socalled White-box frameworks consist of a collection of incomplete (abstract) classes, 
that is, classes that contain methods without meaningful default implementations (Pree, 
1996). To adapt the framework, the application developer extends those incomplete classes, 
implementing appropriate methods to satisfy the application needs. As a direct consequence, 
the user of the framework must be aware of its workings and structure. Figure 2.16 shows the 
creation of a subclass A1 in order to add behavior not implemented in the superclass A. The 
new behavior is added by overriding the necessary methods of the superclass A. 
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Figure 2.16 - Sample framework class hierarchy. (Pree, 1996) 

Black-box frameworks 

Black-box frameworks are similar to white-box frameworks, with the exception that 
they offer several ready-to-use components to be combined, instead of demanding them to 
be created through extension. Modifications are accomplished by composition, not by 
programming. Black-box frameworks are easier to reuse, if they have the right components. 
Most of the time, though, frameworks have many white-box aspects in the beginning and 
move towards black-box, as some often used components are incorporated.  

The example below, picked from Pree (1996), shows the adaptation of a framework by 
composition of white-box and black-box components. In the framework class hierarchy in 
Figure 2.16, class B already has two subclasses B1 and B2 that provide default 
implementations of B�s abstract method. Suppose that the framework components interacted 
as depicted in Figure 2.17(a), a programmer would adapt this framework, for example, by 
instantiating classes A1 and B2 and plugging in the corresponding objects (see Figure 
2.17(b)). In the case of class B, the framework provides ready-to-use subclasses; in the case of 
class A the programmer has to subclass A first. 
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Figure 2.17 - Framework (a) before and (b) after specialization by composition. (Pree, 1996) 

Hot Spots 

Hot spots are the �aspects of an application domain that have to be kept flexible� 
(Pree, 1996 and 1997). To find the hot spots is a priority when designing a framework, as it is 
not cost-effective to make the framework flexible in every conceivable way. The complexity 
of keeping the framework exceedingly flexible also makes the framework harder to reuse and 
maintain. The design using hot spots is explained further in Section 2.5.4. 

Framelets 

A framelet is simply a small framework. According to (Pree and Koskimies, 1999), �In 
contrast to a conventional framework, a framelet is small in size (< 10 classes), does not 
assume main control of an application and has a clearly defined simple interface.� So that 
framelets represent a way for modularizing frameworks. 

Framelets, like classes in a class library, can be arranged into families, like a family of 
framelets that processes documents. There may be a framelet responsible for managing 
payment notices; another framelet that handles invoices; another that treats purchase orders, 
etc. 

2.5.3 Framework construction patterns 

It is necessary to know how to construct frameworks that can be reused in a variety of 
domains. So that it is important to understand the essential framework construction 
principles. Socalled design patterns apply the construction principles in various situations. 
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The implementation of frameworks relies on �abstract classes� and �abstract 
coupling�. Abstract class is a class that contains one or more methods without a meaningful 
implementation. These methods are the socalled hooks that the application-defined 
components must implement, through extension of the abstract class, to provide their 
application-specific code. As the application-specific class extends the abstract class, it 
automatically inherits all method signatures. This relationship is called �abstract coupling�, 
and is the basis for both white-box and black-box design. Abstract coupling allows the 
substitution of the base class for any other class that contains the expected method 
signatures, without any change in the code that exercises that base class.  

2.5.3.1 Hook combination patterns 

As was shown before, the main objective of using hook-template pairs is to provide 
flexibility. The code for the hook and template may be in the same class or in different 
classes.  In this subsection, the class containing the code for the template method is called T, 
and the class containing the code for the hook method is called H. (Pree, 1995) 

Unification 

When the template and hook methods are unified in the same class, the combination 
principle is called �Unification�. The implication of using this pattern is that it requires 
adaptations through inheritance, requiring an application restart to accomplish any change. 
Figure 2.18(a) shows the unification of the template and hook classes in the same class. 
(Pree, 1996). 

Those methods that meant to be extended are called �hook methods�, and the 
methods that call them are called �template methods� (Gamma et. al. 1995). Template 
methods define the behavior, flow of control or the interaction of objects that must be 
common for any of the classes that extend the base class. This allows the extended classes to 
change the hook method behavior without changing the source code for the class that 
implements the template method. 

Separation 

When the code for the template and hook methods is kept in different classes, it 
provides an implementation to the combination principle called �Separation�. Separation 
corresponds to an abstract coupling between the template and hook classes, allowing the 
template class behavior to change by composition, instead of by inheritance. This also allows 
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runtime substitution of H, instead of requiring a code change, which implies an application 
restart. Figure 2.18(b) shows the separation of the template and hook classes. (Pree, 1996) 

 

(a) 

TH T H 

(b)  

Figure 2.18 � (a) Unification and (b) Separation of template and hook classes. (Pree, 1996) 

Recursive combination patterns 

It is possible to make the template class as a descendant of a hook class (see Figure 
2.19(a)). In the degenerated version of the recursive combination, template and hook classes 
are unified (see Figure 2.19(b)). This situation can lead to a set of recursive combinations that 
allow the building of directed graphs of objects. Then, instead of plugging a simple object, it 
is possible to compose directed graphs of objects. The template and hook methods must 
have the same signature to make the forwarding work, even if the code for the template and 
hook are separated. (Pree, 1996)  

 

(a) 

T 

H 

(b) 

TH 

 

Figure 2.19 � Recursive combinations of template and hook classes. (Pree, 1996) 

Chain of collaboration 

The chain of collaboration happens when the template and hook classes are unified in 
the same class and each unified class can refer to another 0 or 1 class, leading to a line of 
objects that collaborate to solve a specific problem. The main difference between this chain 
of collaboration and the behavior composition is that �TH objects can be viewed as equally 
ranked and interchangeable in the sense that each TH object can refer to another TH object� 
(Pree, 1996). This construction also makes the T and H methods to be the same: the method 
should verify if it is possible to help to solve the problem and act, before it forwards the 
request to the next object in line.  
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2.5.3.2 Construction principles and the GoF design-patterns 

Many of the design-patterns shown in the GoF (�The gang of four�, Gamma et al. 
1995) book are examples for small frameworks that apply the above construction principles. 
The design-patterns vary only on the semantics for the hot spots. (Pree, 1996) 

GoF patterns with a template-hook unification 

The most obvious pattern from the GoF catalog that is based on the unification 
principle is the Factory Method pattern. The unified template and hook class is called Creator, 
and the hook method Factorymethod(). (Pree, 1996) 

GoF patterns with a template-hook separation 

Most GoF patterns, though, are based on the Separation. Among them, Bridge, 
Abstract Factory, Builder, Command, Interpreter, Observer, Prototype, State and Strategy. 
Table 2.1 below shows how the catalog patterns and its corresponding hook method and 
class, besides its template class and hot spot semantic. (Pree, 1996) 

GoF patterns with recursive template-hook combinations 

Table 2.1 � Naming issues of catalog entry. (Pree, 1996)  

Catalog Entry Hook Class Hook Method Template Class Hot Spot Semantics 
Abstract Factory AbstractFactory CreateProduct() Client Families of product 

objects 
Builder Builder BuildPart() Director How a complex 

object is created 
Command Command Execute() Invoker When and how a 

request is fulfilled 
Interpreter AbstractExpression Interpret(�) Client Interpretation of a 

language 
Observer Observer Update() Subject How the dependent 

objects stay up to 
date 

Prototype Prototype Clone() Client Class of object that 
is instantiated 

State State Handle() Context States of an object 
Strategy Strategy AlgorithmInterface() Context An algorithm 

Some of the design-patterns apply the recursive combinations shown before. When 
template and hook classes are separated and a template object can refer to any number of 
hook objects, the pattern is the Composite. When template and hook classes are separated, 
but each template object can refer to at most one hook object, the pattern is Decorator. 
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When the template and hook classes are unified and each object can refer to at most one 
other object, it is named Chain of Responsibility. (Pree, 1996) 

2.5.4 Hot-spot-driven design 

The problem with frameworks design is how to balance the flexibility versus the 
complexity of use of that framework. Less flexible solutions tend to keep the framework 
smaller and diminish the cost of maintenance and reuse. To find out the most important hot 
spots then becomes a major issue when designing a framework. One technique shown at 
(Pree, 1996, 1997 and 2000) is to use hot spot cards, to express both data and 
behavior variation points (see Figure 2.20).  It is almost certain that a framework will need a 
number of iterations before it is considered well designed. Important hints to cut that 
number of iterations are: asking the right questions to the right people (it seems obvious, 
although it is not always easy to find who the right person may be); investigate similar use 
cases, trying to spot the differences between them; examine maintenance of old similar 
systems, the spots that change more often are likely the spots where flexibility is more 
required. 

 Hot Spot Name 
  Specify degree of flexibility: 
       Adaptation without restart 
       Adaptation by end user 

General description of semantics: 

Sketch hot spot behavior in at least two specific 
situations: 

 

Figure 2.20 � Layout of function hot spot card. (Pree, 1996) 

Hot spot cards are a tool to improve communication between domain experts and 
software engineers, but they lack the capability to express recursive combinations. So, 
according to (Pree, 1996), it is up to the software engineer to use them in order to produce 
more elegant and flexible architectures.  
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2.5.5 Applying Software Engineering Issues 

Along this thesis, the above concepts are extensively applied. Especially in Chapter 3 
where the CANN framework architecture and implementation is discussed, most of those 
concepts can be identified such as: classes, components, design patterns and framelets. 

The CANN framework was completely built taking care of properly applying these 
concepts from the very beginning. The first design rounds of the ANN framework 
construction were done using the hot-spot-driven design to identify its flexibility points. By 
using UML the object model was refined many times during the sessions of discussion 
between the ANN and SWE experts. The result is an object model where some framelets are 
identified.  

The identified framelets were carefully implemented in Java. The implementation took 
care of applying the proper design patterns for each desired semantic situation. As Java 
evolved to implement its components model, JavaBeans, the principal objects evolved to Java 
components. 

In order to validate the components and framelets, four different ANN models were 
implemented using them. Besides this, an ANN simulation environment was built. To 
conclude, study cases under well-controlled environment validated the implementations.  

The result of the whole implementation effort is a flexible ANN implementation and 
simulation environment, as well as a set of SWE implementation and design experiences 
gained from the application of the construction of ANN software. 
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3  T h e  C A N N  s o l u t i o n  

This chapter explains in details the implementation of the CANN (Components for 
Artificial Neural Networks). It shows how each of the core frameworks where defined and 
implemented. At the end, a comparison to other approaches are presented. 

3.1 Introduction 

There are numerous books and papers about ANN implementations and ANN 
development, besides tools and freely available programs on the Internet that address the 
development of ANN or even one or another ANN model in object-oriented fashion. But 
most of this work is only a wrapping of C to C++ or Java code being limited as object-
oriented design and architecture. This code, in general, is not reusable besides sometimes 
being very usable and efficient. Rogers (1997) classifies this approach as coarse-grained 
because the ANN objects encompass a great deal of functionality, and do not exploit the 
inherent object nature found in ANN.  

The implementation of this coarse-grained software for ANN may happen for many 
reasons: 

• Difficulty in approaching the problem of programming the algorithms with 
objects that represent connectivity, functionality and cooperation. 

• Opposed to the coarse-grained approach, the implementation of such classes 
could lead to a fine-grained solution, which perhaps can be an inefficient 
solution. On the other hand, the fine-grained approach can be ideal to 
implement the ANN architecture to enhance existing ones because it is more 
elegant and flexible from the software engineering point of view. It is difficult 
to balance the two approaches.  

Thus, the goal of implementing an object-oriented solution for ANN software is to 
build a set of tools to develop ANN and to provide design and programming studies that can 
help gradually increase the flexibility, reusability and velocity of different ANN system 
development efforts. In this work, the developed prototypical tool set is not complete and 
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the implemented models do not cover everything in the ANN domain but are sufficient to 
have a deep study of the field to meet the goals of this work. 

The basic principle in building on object-oriented architecture is to find out the 
commonalties in the application area, so that it is necessary to find the common aspects 
among the various ANN models. The first common elements that show up are the neurons 
and synapses. Later, other elements can also be defined such as layers of neurons, 
mathematical functions, similar interfaces to the external world, etc. 

3.1.1 Why build Components for ANN? 

An ANN implementation should be flexible enough to solve problems in several 
application domains. This chapter focuses on this aspect i.e., constructing a flexible ANN 
system. In ANN software development, it is common to redevelop models from scratch each 
time a different application must be accomplished. There are tools that try to avoid this and 
help on the main ANN development aspects offering some pre-defined building blocks. 
Unfortunately, in general, these tools are commercially available software and their structure 
is not open for analysis. Furthermore, ANN software developers usually:  

• Think about only one neural model to solve a specific application problem.  

• Come up with very specific implementations for a particular problem.  

• Concentrate on ANN performance and not on the construction of different 
ANN models and its reusability in different problem domains.  

Thus, object-oriented design and implementation have hardly been applied, without 
compromises, so far in this domain area. The intention of this work is to build a flexible 
object-oriented architecture in order to solve the following problems related to the 
implementation of ANN:  

• The architecture should be flexible/extensible to deal with various neural 
models. 

• Flexible ANN architectures that can change their structure and behavior at run 
time allow experiments to gain better results. 
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• It should be easy to have different neural network models distributed over a 
network. In this way, a suitable solution to a decision problem can be found 
more quickly. 

• In the long run, the object-oriented architecture could form the basis of 
building up hierarchies of ANNs working together, cooperating, and acting as 
intelligent agents in a distributed environment. 

Many important aspects of ANN development were already covered that certainly 
explain some reasons for developing ANN components. But no reason is stronger than 
experience. The experience of developing software and continuously adapting it to different 
situations in an infinite loop is sometimes frustrating. This adaptation means having to 
frequently migrate code from one platform to another, to adapt code to a new application 
domain, to adapt code to a specific user necessity, to adapt code to new improvements on the 
ANN theory, to adapt code to implement new ANN models, and so on. Later, the 
experiences collected by implementing a traditional software solution for ANN (the Hycones 
expert system) are briefly explained.  

3.1.2 The Hycones system as starting point   

Hycones (short for Hybrid Connectionist Expert System; Leão, 1993) is a sample 
hybrid system that is especially designed for classification decision problems. The core 
technology is artificial neural networks based on the Combinatorial Neural Model (Machado 
and Rocha 1989 and 1990). The experiments with this model proved that it is powerful for 
classification problems, providing good results ranging from medical diagnosis to credit 
analysis (Leão 1993a, Reátegui 1994, da Rosa 1995). This section begins with a discussion of 
the principal features of Hycones. Based on this overview the problems regarding its 
flexibility are outlined. These problems were encountered when Hycones was applied to 
different domains. 

Hycones is a generator system in the sense that its inherent ANN system, the CNM, 
generates, upon demand, as many neurons as necessary to solve the domain problem. It can 
also generate other AI structures such as frames or semantic rules based on the knowledge 
built by the ANN. The fact that Hycones is a generator system already indicates that the 
design of a generic architecture constitutes an important goal right from the beginning. 
Unfortunately, the conventional design and implementation did not provide the required 
flexibility as will be outlined in Section 3.1.2.1. 
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The first step in using Hycones is to specify the input and output nodes of the ANN. 
In the case of a customer classification system, the input nodes correspond to the 
information on the order form. Hycones offers different data types (e.g., string values, fuzzy 
value ranges) to specify the input neurons, which maps the so-called findings. The output 
neurons, called hypotheses, correspond to the desired decision support. For example, in the 
case of a customer classification system, the customer categories become the output neurons. 

?
…Input Neurons

Output Neurons

HYCONES

…

…

Combinatorial Neurons

Input Neurons

Output Neurons

 

Figure 3.1 - Hycones as ANN generator. 

Based on the information described above, Hycones generates the Combinatorial 
Neural Model (CNM) topology depending on some additional parameters (various 
thresholds, etc.). Figure 3.1 schematically illustrates this feature of Hycones. Each 
combination of input neurons contributes to the overall decision. CNM applies an inductive 
learning that is performed through the training of the generated ANN based on available data 
using a punishment and reward algorithm and an incremental learning algorithm (Machado 
and Rocha 1989). Inductive learning allows automatic knowledge acquisition and incremental 
learning. 

Once the generated ANN is trained, Hycones pursues the following strategy to come 
up with a decision for one specific case (e.g. a customer): the ANN evaluates the case and 
calculates a confidence value for each hypothesis. The inference mechanism finds the 
winning hypothesis and returns the corresponding result. 
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Additional expert knowledge can be modeled in expert rules (Leão and Rocha 1990). 
For example, rules describing typical attributes of customers belonging to a particular 
category could be specified for the mail order decision support system. Such rules imply 
modifications of the weights in the ANN. Figure 3.2 exemplifies this Hycones property. The 
expert rule: I3 & I4 & In => O2, corresponds to the strengthened connections among the 
input nodes I3, I4 and In, the combinatorial node C3, and the output node O2 of an ANN. 

I3 I4 In

…

…

O2O1

I2I1

C3C1 C2 C4

…

 

Figure 3.2 - Incorporating expert rules into the ANN topology. 

3.1.2.1 Adaptation problems 

Despite the intention of Hycones to be a reusable generator of decision support 
systems, the Hycones implementation had to be changed fundamentally for each application 
domain. In other words, the Hycones system had to be implemented almost from scratch for 
each new application domain. What are the reasons for this unsatisfying situation? 

Limits of hardware & software resources 

The first Hycones version was implemented in CLOS. CLOS simplifies the 
implementation of core parts of Hycones, but the execution time turns out to be insufficient 
for the domain problems at hand. 

In subsequent versions of Hycones, parts of the system were even implemented on 
different platforms to overcome performance problems and memory limits. For example, the 
ANN training algorithm is implemented in C on a Unix workstation. C was chosen to gain 
execution speed. Other parts of Hycones, such as an interactive tool for domain modeling by 
means of specifying expert rules, are implemented on PCs and use Borland Delphi for 
building the GUI. 

Complex conceptual modeling 
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This issue is also related to performance problems: Hycones manages the complex 
ANN topology by storing the information of all the connections and their corresponding 
weights in main memory. (Hycones provides no parallelization of ANN training and testing.) 
Due to memory limits, only parts of the ANN structure can be kept there and the rest is 
stored in a database. Roughly speaking, database records represent the connections and 
weights of one ANN topology. In general, this forms quite a complex conceptual model, 
involving overhead when swapping ANN weights between memory and database. The way in 
which the information about the generated ANN is stored in database tables had to be 
changed several times to be optimal for the database system in use. These changes are not 
only tedious, but also error-prone. 

The fact that Hycones also became a hybrid system with regard to its implementation 
implies complex data shifting between different computing platforms. The parameters 
comprising the specification for the ANN generation are entered on PCs, but the ANN 
training and testing is done on Unix workstations. Finally, if the user prefers to work with the 
decision support system on PCs, the generated and trained ANN has to be transferred back 
from the Unix platform to the PC environment. 

Neural network models 

Hycones supports only one ANN model, the Combinatorial Neural Model, but it 
should be possible to choose from a set of ANN models, the one that is best suited for the 
decision support problem at hand. A version of Hycones (Guazelli and Leão, 1994) was 
developed using the ART (Grosberg, 1987). This version was hard coded, so the CNM and 
ART implementations are independent and nearly no reusability was applied. 

Conversion of data 

An application of Hycones requires providing of data for ANN training and testing. Of 
course, various different ways of dealing with these data have to be considered. For example, 
data are provided data in ASCII-format, in relational database tables, or in object databases. 
The data read from these sources must be converted to valid data for the ANN input. This 
conversion is done based on the domain knowledge, which also changes from application to 
application. Though this seems to be only a minor issue and a small part of the overall 
Hycones system, experience has proven that a significant part of the adaptation work deals 
with the conversion of training and test data. 
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In order to overcome the problems mentioned above, Hycones was completely 
redesigned based on framework construction principles. The problems of the conventional 
Hycones implementation form a good starting point for identifying the required hot spots. 
The next section presents the hot-spot-driven redesign and implementation of Hycones. 

3.2 Design of a neural network framework architecture 

The project where the components for ANN were developed was called Components 
for Artificial Neural Networks, CANN for short, usually referred in this work as CANN 
project and CANN tool for its software implementation. The goal of the CANN project was to 
build up a framework for implementing ANN and a simulator for running them. The 
simulation environment developed on the CANN was used as the test bed for the its 
components. 

The hot spots of CANN can be summarized as follows: 

• Data conversion: The simulation environment should provide flexible 
mechanisms for converting data from various sources. CANN should be able 
to support these mechanisms to feed data to the different ANN models. 

• Domain modeling: It should be natural to model different problems and 
associate them to different data sources and ANN models. 

• Inference engine: CANN should support several ANN models (as already 
pointed out, two separate Hycones versions implemented two different ANN 
models the Combinatorial Neural Model and the ART). The idea here is to 
have more than one model running on the same simulation environment at the 
same time. The ANN internal structure and behavior changes from model to 
model, but some significant aspects can be kept flexible in order to facilitate 
any ANN model implementation. 

• Parallelism: In order to improve performance, parallelism shall be implemented 
at the level of ANN instances. 

• Distribution and code mobility: Also to gain performance, a solution for the 
mobility of the different ANNs being trained on the simulation environment 
must be implemented. 



University of Constance 

Computer & Information Science 

 

 

Software Research Laboratory 
A Component Architecture for 
Artificial Neural Networks 
Fábio Ghignatti Beckenkamp 
June 2002 
Page 86 

 

• General GUI: The simulation of ANN shall be done in a very similar way for 
different ANN models. The actions applied over the ANN models are similar 
to the different ANN models so that a unique general GUI can be developed in 
order to manage any kind of ANN model. There are some aspects that are 
unique to each ANN model that shall be kept flexible such as the parameters 
configuration and the ANN structure visualization. 

Figure 3.3 shows the frameworks considered essential to implement the hot spots listed 
above. 

 

ANN  
Framework 

Simulation  
Framework 

GUI  
Framework 

Data Converter 
Framework 

Domain 
Framework 

 

Figure 3.3 � CANN frameworks 

Domain knowledge modeling and data conversion are parts of the architecture that are 
good candidates for defining general frameworks. The CANN shall concentrate on finding a 
generalized way of defining the domain so that it can be applied to any ANN model and 
domain problem. Data conversion shall be implemented in order to facilitate database and 
text file access for learning and testing data fetching. In this way, it is expected to solve the 
problem of implementing this part of the system for each new applied domain problem. 

An ANN framework shall be defined in order to facilitate the implementation of 
different ANN models. Modeling the core entities of the ANN, that is, neurons and 
synapses, as objects solves the complex conceptual modeling of Hycones. Instead of storing 
the generated ANN in database tables, the topologies are saved as objects via Java�s 
serialization mechanism. But the most important expected contribution of such a framework 
is to be able to reuse those core ANN components for implementing new ANN models. 

It is also important to meet the goal of having different ANN instances of different 
ANN models running at the same time. The object-oriented model also forms the basis for 
implementing this simulation facility. Besides this, it forms the architecture for parallelizing 
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and distributing the ANN learning and testing. These aspects are discussed separately in 
Chapters 4 and 5.  

Finally, Java, being a portable language and system, solves the problem of splitting the 
original system into subsystems implemented in various programming paradigms on different 
platforms. CANN runs on all major computing platforms. 

3.2.1 Summary of desired software characteristics and relation to other work 

Section 3.3 analyzes and compares related work to the CANN project. Table 3.1 
summarizes the considered software characteristics and shows whether the other authors also 
approach them.  

Table 3.1 � Software characteristics and the analyzed related work 

Software characteristic CANN Freeman Masters Vondrák Rogers 
Domain knowledge modeling !     

Accessing different data 
sources 

!     

Data conversion !    ! 
Different ANN models 

implemented 
! ! ! ! ! 

ANN as reusable 
components 

!  ! ! ! 

ANN building components ! ! ! ! ! 
Different ANN instances 
running at the same time 

!     

Runtime addition of new 
ANN components 

!     

ANN GUI components !     
Parallelism !     

Distribution !     
Platform independent !     
Hierarchies of ANN�s      

The related work analysis was done comparing the work of other four authors. The 
first is the simulation software based on structured programming in Pascal proposed by 
Freeman and Skapura (1992). The other authors develop ANN software based on the object-
oriented paradigm. They are: Timothy Masters (1993), Ivo Vondrák (1994) and Joey Rogers 
(1997). Masters centers his work giving tips on how to implement ANN specific functionality 
in C++. Vondrák�s work is fully concentrated on designing a fully object-oriented solution of 
an ANN software implementation. His language of choice is Smalltalk. Finally, Rogers also 
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concentrates on designing object-oriented software to implement diverse ANN models in 
C++. 

From Table 3.1 it becomes clear that CANN implements characteristics that are not 
addressed by the other authors. Their work concentrates on the construction of software 
artifacts to build ANN models and are not concerned about issues such as the ANN models 
applicability to the problem at hand, performance, integration to data and GUI control. 
CANN implementation goes beyond not only by proposing the ANN model software 
construction but also suggests the implementation of aspects that are important for the 
simulation and usability of the software infrastructure. The next section explains the CANN 
software architecture and design that support the desired software characteristics sketched in 
Table 3.1. 

3.2.2 The ANN framework 

The ANN framework was designed in order to reflect the necessary building blocks for 
creating different ANN architectures. The design takes into consideration the flexibility for 
reusing the core entities of an ANN.    

3.2.2.1 Object-oriented modeling of the core entities of neural networks 

Neurons and synapses of ANNs mimic their biological counterparts and form the basic 
building blocks of ANNs. CANN provides two abstract classes, Neuron and Synapse, whose 
objects correspond to these entities. Both classes offer properties that are common to 
different neural network models. The idea is that these classes provide basic behavior 
independent of the specific neural network model. Subclasses and associated classes add the 
specific properties according to the particular model. 

Receptor Neuron

Source Neuron

Synapses

… …

…

…  

Figure 3.4 - The relationship between Neuron and Synapses objects. 

An object of the Neuron class has the activation as its internal state. It provides 
methods to calculate its activation and to manage a collection of Synapses objects. A Synapse 
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object represents a direct connection between two neurons (here distinguished by the names 
Receptor and Source). The receptor neuron manages a list of incoming synapses (represented by 
the solid arrows in Figure 3.4) and computes its activation from these synapses. A Synapse 
object has exactly one Neuron object connected to it, that is the source of the incoming sign. 
The dashed arrows in Figure 3.4 represent the computational flow (set of incoming signs 
from all source neurons). The incoming signal from one source neuron is processed by the 
synapse and forwarded to the receptor neuron on its outgoing side.  

+compute()
+generateSynapses() : int

-computationStrategy : ComputationStrategy
-currentActivation : int
-attribute : Attribute
-incomingSynapsis : Object

Neuron

+compute()
+updateWeight()

-computationStrategy : ComputationStrategy
-sourceNeuron : Neuron
-weight : int
-currentFlow : int

Synapse

1

-has

*
1

-has

1

  

Figure 3.5 - Neuron and Synapses composition. 

As the synapse knows its source neurons, different neuron network topologies can be 
built, such as multilayer feedforward or recurrent networks. The Figure 3.5 shows the 
implementation of the Neuron and Synapse classes. The process of creating the neural network 
architecture is controlled by a method called generateNet() and belongs to the interface 
INetImplementation that is explained later in Section 3.2.3. Each neural network model is 
responsible for its topological construction. Different neural models use the Neuron and 
Synapse classes as the basic building blocks for the neural network structure and behavior 
construction. Code 3.1 shows some coding aspects of the Neuron class and Code 3.2 the 
Synapse class to make clear how these classes are implemented. The core explanations for 
them come in the next sections. 
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Code 3.1 - The Neuron class 

 
public abstract Neuron class extends Object implements Serializable { 
 // stores the resulting activation computation  

int currentActivation;  
  
 // vector of input Synapse objects 

Vector incomingSynapses;  
 
// strategy for processing input values (see explanation in the 
// text) 

 ComputationStrategy compStrategy;  
 
 Neuron() {…} 
 
 Neuron(ComputationStrategy  cs) {…} 
 
 abstract void compute(Neuron upNeuron, Vector parameters); 
 abstract int generateSynapses( 

Vector sourceNeurons,  
ComputationStrategy  synapsesCompStrategy); 

 
 float getCurrentActivation() {…} 
 
 Vector getSynapses() {…} 
 
 synchronized void setCurrentActivation(float newActivation) {…} 
} 

Code 3.2 - The Synapse class 

public abstract class Synapse extends Object implements Serializable { 
 // the neuron that the synapse receives computation 
 Neuron sourceNeuron;  
 
 // strategy for processing input values (see explanation in the 

// text) 
 ComputationStrategy compStrategy;  
  

int weight;  // synaptic weight 
 int currentFlow; // stores the result of the synapse computation 
 
 public Synapse(Neuron addtlSourceNeuron,  

ComputationStrategy  cs) {…} 
 
 public Synapse(ComputationStrategy  cs) {…} 
 
 abstract void compute(Neuron upNeuron, Vector parameters); 
 
 void setWeight(float calcWeight) {…} 
 
 float getWeight() {…} 
 
 float getCurrentFlow() {…} 
 
 void setCurrentFlow(float cf) {…} 
} 
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3.2.2.2 Using Neuron and Synapse classes to create neural network topologies 

In the case of implementing a multilayer feedforward neural network, the neurons for 
all necessary neuron-layers are created initially. Later, the necessary synapses to connect the 
neurons at different layers are created and correctly connected to the neuron layers. A list of 
synapses (called incomingSynapses) controls each instance of Synapse that connects an output 
neuron to a hidden neuron. The abstract Neuron class (see Code 3.1) implements this list. 
When creating instances of the Synapse class (see Code 3.2), it is informed in its constructor to 
which hidden neuron it must be connected. The reference to the hidden neuron is stored in 
the instance variable sourceNeuron. This process is repeated for all network layers. The abstract 
method generateSynapses(Vector sourceNeurons, ComputationStrategy  synapsesCompStrategy) in the 
Neuron class, is responsible for the generation of Synapse instances and their appropriate 
connection to source neurons. As this method is specific to different neurons on different 
neural models, it is only implemented in its subclasses. The hierarchy of the classes derived 
from Neuron can be seen in Figure 3.6 below. 

Neuron

BPNeuron CNMNeron SOMNeuron ART1F1Neuron

ART1F2Neuron

BPInputNeuron

BPBiasNeuron

BPOutputNeuron

CNMInputNeuron

CNMCombinatorialNeuron

CNMHypothesisNeuron

SOMInputNeuron

SOMOutputNeuron

 

Figure 3.6 � Neuron hierarchy. 

The Neuron and Synapse abstract method compute() needs a more detailed explanation, 
which will be done in the next section. The remaining methods in both classes are simply 
getter and setter methods to get and set the state of the instance variables. Special attention 
has to be given to the setter methods of the instance variable currentActivation (method 
setCurrentActivation()). As this method can be called by different synapses running in parallel, it 
was necessary to synchronize it in order to warrant the currentActivation value integrity.  

The class hierarchy for the Synapse class is presented below in Figure 3.7. It is possible 
to find out in the two hierarchies, Neuron and Synapse, that the subclasses are created to 
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implement each specific ANN model. The hierarchies are natural for an ANN expert. The 
subclasses of Neuron implement the abstract methods generateSynapses() and compute(). The 
Synapse subclasses implement the abstract method compute(). Both subclasses implement 
specific methods necessary for the specific ANN model at hand. For example, the CNM 
specific Synapse subclasses include punish and reward accumulators and methods to manage 
it.  

Synapse

BPSynapse CNMSynapse SOMSynapse ART1Synapse

ART1F2Neuron

CNMLowerSynapseCNMUpperSynapse

 

Figure 3.7 � Synapse hierarchy. 

The software architecture explained above was successfully used to implement different 
neural network models involving different neural network architectures. The implementation 
of recurrent computation in the proposed architecture typically implies synchronization of 
the computational flow. It is necessary to select the next neuron to do the computation in a 
learning step. The typical solution is to choose the neuron randomly (Haykin 1994). 

An interface called INetImplementation is tightly associated with the Neuron class 
(INetImplementation interface is explained in Section 3.2.3). Roughly speaking, an 
INetImplementation object harnesses the ANN in order to make decisions. The 
INetImplementation object represents the inference engine (= neural network model) of the 
running CANN system. Its interface reflects the needs of the decision making process. For 
example, a method getWinner() computes which output neuron has the maximum activation. 
Due to the design of INetImplementation, CANN supports different inference engines. How to 
switch between different ANN models is discussed in Section 3.2.3. 

3.2.2.3 The neuron and synapse behavior 

Specific ANN models imply the need for specific behavior of the Neuron and Synapse 
classes. A simple solution would be to create subclasses of Neuron and Synapse, but this 
solution would generate a nested hierarchy, because, for each neural model, many subclasses 
of Neuron and Synapse would be created to implement each specific behavior. For example, in 
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case of Backpropagation the subclasses would have the names BPNeuron and BPSynapse. 
BPNeuron would factor out commonalties of the Backpropagation-specific classes 
BPInputNeuron, BPHiddenNeuron and BPOutputNeuron. If the user needed to change anything 
on the functionality of any of those classes, he would have to subclass it. The part of the 
neuron and the synapse that changes frequently is its activation calculation. For example, to 
change the activation function of a Backpropagation from a linear to the sigmoid function, 
there three BPNeuron subclasses would be needed for implementing each function. Quickly, 
there would be many subclasses of each kind of Backpropagation neuron and synapse. For 
each different neural model, the same would happen, generating an exploding hierarchy 
where the functionality of each one is hard-coded in the specific subclass.  

To avoid this, the Bridge pattern was used (Gamma et al., 1995). This pattern is 
equivalent to the Separation Metapattern (Pree, 1997), and therefore has the ability to change 
neuron and synapse behavior at run-time. Figure 3.9 shows the application of this pattern to 
the Neuron class. Its application is analogous to the Synapse class. The necessity of the flexible 
behavior for Neuron and Synapse was detected during the hot spot analysis. The Figure 3.8 
shows the hot spot used to determine the flexible behavior for these classes. 

 Title: Making the neurons and synapse behavior flexible 
Description: The neurons and synapses behavior is given by mathematical functions. 
The simply change of the mathematical function may change the results of the given 
ANN model 
Runtime: Nice to have 
Changed by end user: Yes, by programming 
 
Description of 2 instances:  

• A Neuron with a Fuzzy AND behavior may be used by a CNM ANN or any 
Fuzzy model 

• A Synapse with a simply multiplication function can be used by both 
Backpropagation and CNM 

  

Figure 3.8 � CANN Hot Spot Cards for Neuron and Synapse behavior 

Neuron and Synapse are implemented as abstract classes. Concrete classes are derived 
from those abstract classes for each ANN model. For example the already cited BPNeuron 
and BPSynapse would be the concrete classes to implement Backpropagation specific aspects 
to neuron and synapse. If necessary, subclasses of those concrete classes can be created to 
implement layer specific aspects, like BPInputNeuron and BPOutputNeuron (Backpropagation 



University of Constance 

Computer & Information Science 

 

 

Software Research Laboratory 
A Component Architecture for 
Artificial Neural Networks 
Fábio Ghignatti Beckenkamp 
June 2002 
Page 94 

 

hidden neurons are implemented by the BPNeuron class). The Backpropagation specific ANN 
layers are then built using those classes. Those would be the final classes in the hierarchy, no 
other class should be necessary to be implemented.  

The necessary behavior of each neural model is added to these classes by composition 
through the associated interface ComputationStrategy (see Figure 3.9). The different behaviors 
are implemented in classes that implement ComputationStrategy and can be used by different 
model implementations through the Neuron and Synapse classes. Examples of behavior-
specific classes are functions that are typically implemented by the neurons and synapses to 
calculate their activation. In the CANN framework some components for this purpose where 
implemented, such as: CSEuclidianDistance for the SOM neuron and CSPartialDistance for the 
SOM synapse; CSFuzzyAND and CSFuzzyOR for the CNM neurons; CSMultiplicator for 
CNM and Backpropagation synapses; etc.  

BPNeuron CNMNeuron SOMNeuron

BPHiddenNeuronBPInputNeuron BPOutputNeuron

FuzzyOR FuzzyAND Product

+compute() : float

«interface»
ComputationStrategy

1

-applies

1+compute()

-currentActivation : int

Neuron

 

Figure 3.9 - Design of flexible behavior based on the Bridge Pattern.  

The ComputationStrategy also implements the pattern Flyweight (Gamma et al. 1995). The 
framework has only one instance of each class that implements it. Each instance is shared by 
a large number of Neuron and Synapse instances. This keeps the memory footprint significantly 
smaller and improves the behavior reusability. For example, all CNM combinatorial neuron 
instances (can be thousands at the same time) would use the same instance of CSFuzzyAND 
computation strategy.  

3.2.2.4 Support of different neural network models through the Separation pattern 

One important aspect is to try to separate the logic of manipulating the domain and the 
data cases for learning and testing from the core ANN implementation aspects. In this sense, 
the creation of the class NetManager and interface INetImplementation was elaborated. The 
abstract class NetManager shall hold the aspects that belongs to the ANN process outside the 
ANN architecture boundaries such as: manipulating domain knowledge, fetching test and 
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learn data, managing learn parameters, and managing the whole flow of learning and testing 
processes based on user defined parameters. The processes that are general to any ANN 
model are implemented directly in this class such as: GUI control, and learn and test cases 
manipulations. Specific processes shall be implemented inside its subclasses that are defined 
for each implemented ANN.   

The classes that implement the INetImplementation interface hold the specific ANN 
model architectural implementation. They implement the construction of the ANN 
architecture by combining the Neuron and Synapse classes and implement each ANN inherent 
algorithms. 

Figure 3.10 exemplifies how three ANN models can be incorporated in CANN by 
implementing the interface INetImplementation: Backpropagation (BPImplementation), SOM 
(SOMImplementation) and CNM (CNMImplementation). 

BPImplementation SOMImplementation CNMImplementation

+generateNet() : int
+LearnCase() : void
+TestCase() : Object

«interface»
INetImplementation

1

-manages

1

+generateNet() : int
+startLearn()
+restartLearn()
+createNetImplementation()
+createFrameNeuralNetwork()
+run()

#domain : Domain
#netImplementation : INetImplementation

NetManager

 

Figure 3.10 - ANN models that implement INetImplementation. 

A specific ANN model is defined by implementing the interface INetImplementation and 
its corresponding hook methods such as generateNet() and learnCase(). The complete interface is 
shown in Code 3.3 below.  

The first three methods of Code 3.3 are used for the distribution solution explained in 
Chapter 5. The generateNet() method shall implement the generation of the ANN architecture. 
If the network wasn�t yet generated, the getNetSize() method returns the size the ANN will 
have in number of neurons and synapses if it is generated for a given domain problem at 
hand. If the ANN was already generated this method returns the size of the actual network. 
The learnCase() method is called when one case was already fed by the implemented domain, 
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meaning that the network must perform its learning epoch for that case. More explanations 
on the relation of domain and the ANN framework are given in Section 3.2.3.  

The testCase() method also works the same way as the learnCase() method: when a testing 
case is ready to be analyzed by the ANN, this method is called. It returns a Vector that can 
contain any object, in general an array of numeric results containing the outputs of the output 
neurons and, if possible, an array of strings containing the explanation about the results. The 
methods setLearningParameters() and getLearningParameters() are used to feed and get the 
appropriate ANN learning parameters that in general are defined by the user at runtime. The 
method setParallelExecution() is used to request to run in parallel, if possible. The method 
getStopLearning() is used to verify if the ANN has already finished its learning process. 

Code 3.3 � The INetImplementation interface 

public interface INetImplementation extends java.io.Serializable { 
 
  public void setProxies(IDomain domain) throws java.rmi.RemoteException; 
  public void atLocation(); 
  public boolean restoreObjectReferences(); 
 
  // return any number different than zero to indicate that the generation 
  // succeed or zero that it failed 
  public int generateNet(IDomain domain) throws java.rmi.RemoteException; 
  public int getNetSize(IDomain domain); 
 
  public void learnCase(); 
 
  // return a Vector with the results and explanation if possible 
  public Vector testCase(); 
 
  public void setLearningParameters(Vector parameters); 
  public Vector getLearningParameters(); 
 
  public void setParallelExecution(boolean pE, int threads); 
 
  public boolean getStopLearning(); 
} 

An important design issue is that a developer who reuses such CANN classes does not 
have to worry about which specific subclasses of Synapse and Neuron are associated with a 
particular ANN model. In order to solve this, the Factory pattern (Gamma et al. 1995) was 
applied. A concrete class that implements INetImplementation, such as CNMImplementation, 
already takes care of the correct instantiation of Neuron and Synapse subclasses (see below). 

ANN-Adaptation of CANN 

A sample adaptation of CANN exemplifies the necessary steps to adjust the framework 
components to a specific neural network model (see Figure 3.11):  
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Input Neurons
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CNMImplementation

FuzzyOR

FuzzyAND

MultiplicatorUpper Synapses

Lower Synapses

Attribute

Multiplicator
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Figure 3.11 - Building CNM architecture. 

1. The CNMImplementation object is responsible for the creation of OutputNeuron 
objects (called Hypothesis neurons in the CNM definition, Machado 1990), 
with the CSFuzzyOR behavior and for the creation of InputNeurons, whose 
behavior is explained in Section 3.2.6. 

2. An OutputNeuron instance then creates Synapse objects, which automatically 
create HiddenNeuron instances (called combinatorial neurons in the CNM 
definition, Machado 1990), with the CSFuzzyAND behavior. As the CNM 
model has only one hidden layer, the neurons of the hidden layer are then 
directly connected to the input layer. 

3. The connections between the HiddenNeuron instances and the InputNeuron 
instances are established in an analogous way. The Synapse instances of a CNM 
model have behavior similar to the Backpropagation model using the same 
CSMultiplicator computation strategy that simply does the multiplication of the 
input activation with the synaptic weight and returns the result. 

For the neural network generation process, the classes that implement 
INetImplementation (in this case, the CNMImplementation) rely on the problem-specific domain 
knowledge, whose representation is discussed in Section 3.2.4. The basic idea behind the 
CNM inference machine is that numerous combinations (the small networks that form the 
CNM hidden layer) all test a certain case for which a decision is necessary. Adding the 
activation from all combinations amounts to the OutputNeuron activation. The OutputNeuron 
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with the maximum accumulated activation is the winner (CSFuzzyOR behavior). The CNM 
object also provides an explanation by calculating those input neurons that most strongly 
influenced the decision. Machado and Rocha (1989 and 1990) discuss the CNM-specific 
algorithm. 

Adding behavior to an ANN architecture  

The sequence diagram in Figure 3.12 shows the sequence of computation that happens 
when the ANN, either for learning or for testing, evaluates a case. The class that implements 
INetImplementation knows the instances of output neurons that are implemented in the 
structure already created. The result value of a case computation is implemented by the 
output neurons� compute() method and can be retrieved by the getCurrentFlow() method (see 
Code 3.1 � Neuron class). The INetImplementation class requests computation from the output 
neurons by calling the compute() methods of all existing output neurons. When the output 
neuron is requested to do its computation, it first requires its list of incoming synapses to do 
the same. The synapses also have a source neuron that is requested to do its own 
computation (see Code 3.2 � Synapse class).  

The source neuron is a hidden neuron in the architecture and its compute() method 
implementation also requests the computation of the connected synapses. In this way, the 
request of computation flows from the output neurons to the input neurons. The input 
neuron instance�s behavior is simply to take the activation from outside to be able to start the 
ANN data processing. This activation comes from the class Attribute, explained in Section 
3.2.4. In short, the instances of the Attribute class prepare the activation values from the data 
read in the data sources. These prepared data (activation) are transferred to the input neuron 
instances on demand.  

When the computation flow goes back from the input neurons to the output neurons, 
each synapse and neuron object is then able to do the necessary calculation it is supposed to 
do and returns it to the object that requested it (other neurons and synapses). The instances 
of ComputationStrategy class do this calculation. Finally, the compute() method of each output 
neuron gets the computational results of all connected synapses and does its appropriate 
computation. Then the resulting values can be consulted through the output neurons 
getCurrentFlow() method. The INetImplementation implemented class is able to evaluate these 
values and to make a decision.  
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an INetImplementation a first OutputNeuron a first InputNeuron a first Attribute

Compute()

a first Synapse

Compute()

Compute()

getActivation()

the activation()

the activation()

the activation()

beValid()

getCurrentFlow()

the activation()

all done?

 

Figure 3.12 � Sequence diagram for a case computation. 

The computational flow explained above is a parallel process internal to the neural 
network architecture. Instances of Synapse and Neuron in the same layer can be completely 
independent processes. Depending on the neural model, different synchronization must be 
implemented in order get the correct results and to have optimal performance. The parallel 
implementation strategy of the computational flow is specific to each model and a more 
detailed discussion is done in Chapter 4. 

To complete the appropriate behavior of the implemented neural networks, it is 
necessary to have them related to the knowledge representation of the problem domain. The 
next section explains how the domain model influences and interacts with the neural network 
architecture. 
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3.2.3 The Simulation framework 

CANN should be flexible regarding its underlying ANN model. The choice of the 
most appropriate ANN model depends on the particular decision problem at hand, and 
usually it is necessary to try some different ANN models to see which one performs better. 
Thus, the design should allow the trial of different ANN models. The hot spot card for this 
flexibility is shown on Figure 3.13. 

 Title: Adding new ANN components at the simulations environment at runtime 
Description: The CANN simulator should be able to allow the addition of new 
ANN models during the simulation of others in order to cope with longtime 
simulations. Also more then one ANN shall be able to run at the same time. 
Runtime: Yes 
Changed by end user: Yes 
 
Description of 2 instances:  

• A Backpropagation ANN is running a simulation for more than 24 ours and 
it is possible to add a RBF model to run at the same time. This can be useful 
to evaluate its performance to the same problem domain in the same 
simulation environment. 

• A CNM model is running for evaluating new entries in a production 
environment and a new already learned CNM model is added to substitute 
the first one. 

 

Figure 3.13 � CANN Hot Spot Cards for different ANN models  

CANN should be able to manage various ANN models trying the solution for a 
specific problem in a concurrent way: several neural models could run at the same time trying 
a solution to the problem. To handle this idea the Project and NetManager classes were created. 
The NetManager class is responsible for controlling, at run time, an instance of a neural model 
and the Project class is responsible for managing a set of NetManager instances. A program can 
run as many instances of the NetManager class as necessary to solve a problem. Instances of 
the same or different ANN models shall be possible to be created at runtime.  

As the learning of a neural model can take days, it would be interesting to be able to 
add different ANN models at run-time. Thus, it would be possible to start different learning 
trials during the learning or testing process of other neural models, without stopping the 
processes already started. The added new models could be completely different from the 
others already running. This means the possibility of having new models that have added or 
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deleted neurons and synapses on the ANN structure and/or changed its behavior by 
changing learning strategies and tuning learning parameters. To have these kinds of 
simulation characteristics, it is necessary to have quite a flexible architecture design. This 
design was obtained through the hot-spot-driven design methodology (Pree 1995).    

Code 3.4 shows part of the implementation of the NetManager class where it is possible 
to see the instance variable netImplementation that holds the instance of a concrete class that 
implements the INetImplementation interface. It is also possible to see the instance variable 
domain that stores an instance of the Domain class. The Domain modeling affects directly the 
ANN architecture as can be seen in Section 3.2.4.  

NetManager implements methods such as initFrame() and createFrameNeuralNetwork() that 
are used for controlling the associated GUI of an ANN instance. Methods like generateNet(), 
startLearn() and restartLearn() are directly related to the management of the controlled ANN 
instance implementation.  Some methods are abstract such as createNetImplementation() and 
run() and shall be implemented by the NetManager subclasses. The subclasses of NetManager 
can be seen in Figure 3.14 below and implement functionality specific for the implemented 
ANN model. 

Code 3.4 � The NetManager class implementation 

public abstract class NetManager extends Object implements Serializable, 
Runnable { 
 
  INetImplementation netImplementation; 
  Domain domain; 
  // … 
 
  public void initFrame(DialogSimulate relatedDialog) {…} 
  public void createFrameNeuralNetwork() {…} 
 
  int generateNet() {…} 
  void startLearn() {…} 
  void restartLearn() {…} 
 
  abstract public void createNetImplementation(); 
  abstract public void run(); 
 
} 

To permit the addition of new neural models at run-time, it is necessary to abstractly 
couple the Project with the class NetManager, that is, to rely on the Separation pattern. The 
Project has a list of instances of the NetManager class that are responsible for different ANN 
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instantiation and execution. The relation between the Project class and the NetManager class 
can be seen in Figure 3.14 below. 

BPManager SOMManager CNMManager

+save()

#netManagerList : Object
#annList : Object
+domainList : Object

Project

1

-has

*

+generateNet() : int
+startLearn()
+restartLearn()
+createNetImplementation()
+createFrameNeuralNetwork()
+run()

#domain : Domain
#netImplementation : INetImplementation

NetManager

 

Figure 3.14 - NetManager abstractly coupled to Project 

Code 3.5 below shows part of the class Project implementation. The instance variable 
netManagerList stores a vector of instances of the NetManager class. The instance variable 
annList has the list of possible ANN models that can be instantiated by the Project class and 
stored on the netManagersList. For example, the annList may store the classes: 
CANNP.NeuralNetwork.CNMManager and CANNP.NeuralNetwork.BPManager meaning that 
those two ANN models can be instantiated in that project. Note that the whole name is 
stored, keeping the packages path. The user can add ANN models in runtime and also create 
new instances in runtime. 

Code 3.5 � The Project class 

public class Project extends Object implements Serializable, 
ProjectModifiedListener, IRemote { 
 
  Vector netManagersList;  
  Vector annList;  
  public Vector domainList;  
  … 
} 

The CANN shall also provide a way that the user can describe a problem domain in 
different ways or even have many problem domains simultaneously modeled to be analyzed 
by the different instances of the ANN models running into a project. Consequently, a Project 
may also manage a list of problem domain descriptions as can be seen in Figure 3.15 below. 
The Domain class is explained in Section 3.2.4. Code 3.5 above shows the instance variable 
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domainList that is responsible for keeping a list of instances of the Domain class.  How the 
different ANN instances relate to the Domain instances will be shown in Section 3.2.4 below. 

+save()

#netManagerList : Object
#annList : Object
+domainList : Object

Project

1

-has

*

+generateNet() : int
+startLearn()
+restartLearn()
+createNetImplementation()
+createFrameNeuralNetwork()
+run()

#domain : Domain
#netImplementation : INetImplementation

NetManager

-Evidences : Object
-Hypothesis : Object

Domain

1

-has* 1

-has

1

 

Figure 3.15 - Project coupling Domain instances 

An important characteristic of the whole CANN architecture is that all classes that 
compound the frameworks are Serializable (see Code 3.5). Being the Project class Serializable, 
the user can store its characteristics, It means to store the instances of the modeled domain 
problems and the instances of the associated ANN as well.  

3.2.4 The Domain representation framework 

As the principal application domain of CANN is classification problems, the chosen 
object-oriented design of this system aspect reflects common properties of classification 
problems. On the one hand, the so-called evidences form the input data. Experts use 
evidences to analyze the problem in order to come up with decisions. Evidences in the case 
of the customer classification problem would be the age of a customer, his/her home 
address, etc. One or more Attribute objects describe the value of each Evidence object. For 
example, in the case of the home address, several strings form the address evidence. The age 
of a customer might be defined as a fuzzy set (Kosko 1992, da Rosa 1997) of values: child, 
adolescent, adult, and senior (see Figure 3.16).  
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Fuzzy 
Value 

Fuzzy Set 0 

1 

adolescent adult 

12       15 16 19    20 

child 
0.3 

0.6 
senior 

50           60 
 

Figure 3.16 - Fuzzy set example. 

On the other hand, the hypotheses (classification categories) constitute a further core 
entity of classification problems. In CANN an instance of class Domain represents the 
problem by managing the corresponding Evidence and Hypothesis objects. Even based on 
classification problems and focused on neural networks learning algorithms, the design 
presented here can also be extended to support general domain representation for symbolic 
learning strategies. Edward Blurock (1998) also works intensively on the domain 
representation for machine learning algorithms. Although being completely independent 
works, both lead to quite similar designs. Figure 3.17 shows the relationship among the 
classes involved in representing a particular domain. 

-Evidences : Object
-Hypothesis : Object

Domain

+setActivations() : boolean

-name : String
-Description : String
-Attributes : Object
-fetcher : EvidenceFetcher

Evidence

-name : String
-activation : float
-evidence : IEvidence

Attribute

+setActivations() : boolean

-name : String
-Description : String
-Attributes : Object
-fetcher : EvidenceFetcher
-relatedEvidencesAttributes : Object

Hypothesis

1

-manages

*

1

-manages*

1

-has

*

1
-has*

StringAttributeNumericAttribute

FuzzyAttribute

 

Figure 3.17 - Domain representation. 
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The training and testing of ANN�s are the principal features of CANN. For both tasks, 
data must be provided. For example, for training an ANN to classify customers, data might 
come from an ASCII file. One line of that file represents one customer, i.e. the customer�s 
evidences and the correct classification. After training the ANN, customer data should be 
tested. To do this, CANN gets the evidences of a customer as input data and must classify 
the customer. The data source might, in this case, be a relational database management 
system. It should be clear from this scenario that CANN has to provide a flexible data 
conversion subsystem. Data conversion must be flexible at run time, as the user may wish to 
change the data source anytime during learning or testing. Thus, the Separation pattern is the 
appropriate construction principle underlying this framework. 

3.2.5 The Converter framework 

Two abstract classes constitute the framework for processing problem-specific data, 
class Fetcher and class EvidenceFetcher. Class Fetcher is abstractly coupled with the class 
Domain (see Figure 3.18). A Fetcher object is responsible for the preparation/searching 
operations associated with a data source. If the data source is a plain ASCII file, the specific 
fetcher opens and closes the file. This includes some basic error handling. 

-Evidences : Object
-Hypothesis : Object

Domain -sourceName : String
-sourceLacation : String
-randomExamples : boolean
-numberOfExamples : int

Fetcher

1

-has

1

ASCIIFetcher RDBFetcher OODBFetcher

 

Figure 3.18 - Dealing with different data sources. 

The Evidence class and the Hypothesis class are abstractly coupled with the 
EvidenceFetcher class (see Figure 3.19). Specific subclasses of EvidenceFetcher know how to 
access the data for the particular evidence. For example, an EvidenceFetcher for reading data 
from an ASCII file stores the position (from column, to column) of the evidence data within 
one line of the ASCII file. An EvidenceFetcher for reading data from a relational database 
would know how to access the data by means of SQL statements. Figure 3.19 shows the 
design of these classes, picking out only class Evidence. The Hypothesis class has an 
analogous relationship with the EvidenceFetcher class.  
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Note that the Attribute objects prepare the data from external sources so that they can 
be directly fed to the input neurons of the ANN (see Figure 3.11). This works in the 
following way: each Evidence instance fetches its value from the data source, and this value is 
applied automatically to all attributes of the evidence. Each attribute applies the conversion 
function that is inherent to the specific Attribute class. For example, the StringAttribute 
conversion function receives the string from the database and compares it to a given string 
modeled by the expert, returning 1 or 0 based on whether the strings match. This numeric 
value is stored by the attribute object and will be applied in the ANN input by request. The 
ANN input nodes have a direct relationship with the attributes of the evidence (see Figure 
3.11). When the learning or testing is performed, each input node requests from its relative 
attribute the values previously fetched and converted. The attribute simply returns the 
converted value. 

-Evidences : Object
-Hypothesis : Object

Domain

+setActivations() : boolean

-name : String
-Description : String
-Attributes : Object
-fetcher : EvidenceFetcher

Evidence

+getEvidenceData() : Object

EvidenceFetcher

+setActivations() : boolean

-name : String
-Description : String
-Attributes : Object
-fetcher : EvidenceFetcher
-relatedEvidencesAttributes : Object

Hypothesis

1

-manages

*

1

-manages*

1

-has

*

1

-has*

RDBEvidenceFetcherASCIIEvidenceFetcher OODBEvidenceFetcher

 

Figure 3.19 - Data conversion at the evidence level. 

Visual/interactive tools support the definition of the specific instances of 
EvidenceFetcher and Fetcher subclasses. For example, in the case of fetching from ASCII 
files, the end-user of CANN who does the domain modeling, simply specifies the file name 
for the ASCIIFetcher object and, for the ASCIIEvidenceFetcher objects, specifies the 
column positions in a dialog box. Such visual tools can be seen on chapter 7 (Figure 7.8). 
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3.2.6 Describing problem domains using the Domain and converter 
frameworks 

In order to better understand how to use the classes that form the Domain and the 
converter frameworks let�s consider an example: building the necessary evidences and 
hypothesis for a given domain problem for two different ANN models. The chosen domain 
is the XOR problem. Both ANN models CNM and Backpropagation are able to solve this 
problem.  

The Boolean table shown in Figure 3.20 gives the XOR problem for two variables. 
This is the data that will be fed to the ANN as learning cases. The Boolean table is created in 
a text file that will be read by the CANN simulator as an ASCII file so that the Domain shall 
have an instance of the ASCIIFetcher converter, and the converters for the implemented 
attributes shall be of the type ASCIIEvidenceFetcher. The fetcher for each evidence will indicate 
what position in the file record (line) is the data that shall be fed into the input neuron 
associated to it.  

 0 0 0 
1 0 1 
1 1 0 
0 1 1  

Figure 3.20 - XOR ASCII file for Backpropagation and CNM learning 

3.2.6.1 Backpropagation domain modeling for the XOR problem 

The Backpropagation ANN is modeled with two input neurons and one output neuron 
to solve the given XOR problem, so that it is necessary to model the evidences and 
hypothesis in order to represent this ANN structure. One Hypothesis instance and two 
Evidence instances are created as described in Figure 3.21. The Backpropagation netGenerate() 
method will be able to interpret this domain and create one output neuron associated to the 
hypothesis and two input neurons, each one associated to each evidence. 
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 Hypothesis Output 
ASCIIEvidenceFetcher from = 4, to = 4 
NumericAttribute  Output 
Related Evidences = Input1→I1; Input2→I2 

 
Evidence Input 1 

ASCIIEvidenceFetcher from = 0, to = 0 
NumericAttribute  I1 

 
Evidence Input 2 

ASCIIEvidenceFetcher from = 2, to = 2 
NumericAttribute  I2 

 

Figure 3.21 - Modeling XOR Domain for Backpropagation 

One hypothesis called �Output� is created with fetcher getting the data on the fourth 
column of the learning file. It has a numeric attribute that converts the read data from the file 
into its numeric value. The associated output neuron will request this value under demand. 
The related evidences indicate which ones must be considered to build the ANN architecture 
to the given hypothesis. In case of the Backpropagation, both evidences are considered for 
the construction of the ANN that leads to the output neuron. 

The two created numeric attributes of the two evidences fetch values on columns 0 and 
2 of the ASCII file. The neurons of the Backpropagation hidden layer are created based on 
the configuration value entered by the user at run-time. They will be appropriately connected 
to the created input and output neurons. 

3.2.6.2 CNM domain modeling for the XOR problem 

The CNM is modeled with four input neurons and two output neurons to solve the 
given XOR problem. Two Hypothesis instances and two Evidence instances are created as 
described in Figure 3.22. The possible output values are modeled on the CNM as symbolic 
values �Yes� or �No�, meaning two possible hypotheses for the problem. Therefore, two 
Hypothesis instances are created.  The fetchers for both Hypotheses are once again configured 
to get the values on the fourth column of the ASCII file. If the value is zero, the �No� 
hypothesis is considered the winner, if the value is one, the �Yes� hypothesis wins. Those 
values are fetched by the CNM output neurons whenever necessary during the learning 
process.  
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The attributes of the created evidences are considered for the modeling of the input 
neurons. CNM considers one input neuron for each modeled attribute. For instance on the 
problem domain at hand each input can assume the two Boolean values one or zero. Those 
values are also considered by the CNM as the symbolic values �Yes� or �No�. One attribute 
must be built for each evidence in order to model the two possible values. One CNM input 
neuron is created for each attribute. Therefore the CNM will have four input neurons and 
two output neurons to the XOR problem.  

The CNM netGenerate() method will be able to interpret this domain and create the two 
output neurons associated to the hypothesis string attributes and four input neurons 
associated to each string attribute of the modeled evidences. 

 

Hypothesis Yes 
ASCIIEvidenceFetcher from = 4, to = 4 
StringAttribute Yes; string = “1” 
Related Evidences = Input1→Yes; Input1→No; Input2→Yes; Input2→No 

 
Hypothesis No 

ASCIIEvidenceFetcher from = 4, to = 4 
StringAttribute No; string = “0” 
Related Evidences = Input1→Yes; Input1→No; Input2→Yes; Input2→No 

 
Evidence Input 1 

ASCIIEvidenceFetcher from = 0, to = 0 
StringAttribute Yes; string = ”1”; morbidity = 0.9 
StringAttribute No; string = ”0”; morbidity = 0.9 

 
Evidence Input 2 

ASCIIEvidenceFetcher from = 2, to = 2 
StringAttribute Yes; string = ”1”; morbidity = 0.8  
StringAttribute No; string = ”0”; morbidity = 0.8 

 

Figure 3.22 - Modelling XOR Domain for CNM 

3.2.7 Coupling Domain, ANN and simulation frameworks together 

As it was already described, the class Project contains a list of Domain instances. Each 
such Domain instance is implemented in the way explained in Section 3.2.6 above. 
Consequently a Project may have many domain problem models, that means, modeling of the 
same problem domain in different ways and/or modeling different domain problems. The 
Project also contains a list of NetManager instances that represent the ANN models that shall 
be simulated in order to solve the modeled domain problems. Each instance of a 
NetManager can handle only one domain problem.  
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-Evidences : Object
-Hypothesis : Object

Domain

1

-has

1

+generateNet() : int
+startLearn()
+restartLearn()
+createNetImplementation()
+createFrameNeuralNetwork()
+run()

#domain : Domain
#netImplementation : INetImplementation

NetManager

 

Figure 3.23 - NetManager is associated to a Domain instance 

Figure 3.23 shows the relation between NetManager and Domain classes. The NetManager 
contains a Domain instance cloned from the list of modeled domains in the Project. The 
Domain instance is cloned because more than one ANN instance may use the same Domain 
model at the same time. The appropriate solution for this problem would probably be 
implementing transaction synchronization at the level of the simulation framework. Such a 
solution is much more complex so that simply cloning the Domain warrants that each ANN 
accesses the data via a separate control structure. 

-name : String
-activation : float
-evidence : IEvidence

Attribute

+compute()
+generateSynapses() : int

-computationStrategy : ComputationStrategy
-currentActivation : int
-attribute : Attribute
-incomingSynapsis : Object

Neuron

1

-has

1

 

Figure 3.24 - Neuron fetches activation from its associated Attribute instance 

The specific NetManager class implements how the ANN treats the modeled domain to 
build the appropriate ANN architecture. Each ANN model presumes modeling the domain 
in a determined way in order to properly perform the learning. Besides this, the constructed 
ANN structure will have relationships to the Domain in order to be able to fetch the learning 
and testing data whenever necessary. Typically the output neurons will have relations to the 
hypothesis attributes objects and the input neurons to the evidence attributes objects. Figure 
3.24 shows the relations among those classes. 

3.2.8 The ANN GUI framework 

A complete simulation environment was built to facilitate the simulation of ANN. In 
this environment, a project can be created to manipulate different instances of ANN�s and 
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domain problems. A complete explanation for the CANN simulation environment 
characteristics can be found in Chapter 7.  

The whole simulation GUI environment was also built based on the design principles 
that lead the development of the frameworks so far. Special dialogs for manipulating the 
creation of the domain data such as the hypothesis and evidences, and the runtime adding 
and creation of different ANN instances. Besides those, a small GUI framework was built for 
handling the ANN main functionalities: The ANN GUI framework. 

The ANN GUI framework implements a small set of Java GUI components that group 
general ANN activities such as learning and testing data. The built GUI components are 
intended to be general for any type of ANN. Figure 3.25 shows the main GUI elements 
created for the ANN manipulation. It shows a class called FrameNeuralNetwork that 
implements a Java Frame class. FrameNeuralNetwork contains an instance of a NetManager, so 
that it is able to control the execution of any ANN component implemented on the CANN 
framework.  

-netManager : NetManager
-dialogLearn : DialogLearn
-dialogConsultCaseBase : DialogConsultCaseBase
-dialogConsultUserCase : DialogConsultUserCase
-dialogConfig : DialogConfig
-dialogMoveSimulation : DialogMoveSimulation

FrameNeuralNet

1

-has

1
+generateNet() : int
+startLearn()
+restartLearn()
+createNetImplementation()
+createFrameNeuralNetwork()
+run()

#domain : Domain
#netImplementation : INetImplementation

NetManager

 

Figure 3.25 � GUI framework 

FrameNeuralNetwork has a set of dialogs to manipulate an ANN instance execution: 
DialogLearn for controlling the execution of the ANN learning process; DialogConsultCaseBase 
to control the execution of the ANN testing based on a set of cases; DialogConsultUserCase 
allows the testing of an ANN given one case built at runtime by the user through this GUI; 
DialogMoveSimulation allows the user to make use of the mobility characteristic of the ANN 
instances and move it to a remote computer, this dialog is not obligatory; and DialogConfig to 
control the ANN configuration parameters. This dialog is an abstract class and its concrete 
classes are specifically implemented for each ANN model once the configured learning 
parameters are different for each ANN model. 
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Figure 3.26 shows the FrameNeuralNetwork frame instance. In this case, it is running a 
Backpropagation instance called �BP 1�. The menu �Neural Net� provides the possibility to 
configure the inner ANN component, reset (meaning creating a new network structure), save 
the neural network instance and close the frame. The menu �Simulate� gives the alternatives: 
move the ANN component to a remote machine using the mobility characteristics explained 
in Chapter 5; perform the network learning; and perform the network testing. At the bottom 
of the dialog there is a status bar that in this example is explaining that the ANN instance is 
created and running at the local host at port 7000 where the Voyager ORB server is running 
(see Chapter 5 for details on the Voyager implementation).  

Adicionar os menus abertos e referenciar como a e b abaixo. 

 

Figure 3.26 - FrameNeuralNetwork containing a Backpropagation ANN instance 

Figure 3.27 shows the DialogLearn class. In this example the Backpropagation network 
was generated for the given XOR domain problem in 20 milliseconds. The learning was 
performed for the XOR problem as well and succeeded at 144 epochs taking 1182 
milliseconds. In this dialog the user can generate new nets, start, stop and restart the learning. 
The learning is performed based on an ASCII file that was already defined by the 
implemented Fetcher at the ANN associated Domain instance.  

Figure 3.28 shows a DialogConsultCaseBase instance with a case base formed by the XOR 
problem cases being tested by the Backpropagation ANN. The test is performed based on an 
ASCII file that was already defined by the implemented Fetcher at the Domain instance as well 
as the learning. The cases show the input values for I1 and I2 (Input 1 and Input 2 evidences 
and I1 and I2 attributes of the evidences), meaning zero for false and one for true. The ANN 
output result is a numerical value between 0 (false) and 1 (true). The Figure shows the 
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network performing properly for the first three cases. In this dialog it is possible to start, 
stop, restart and reset the testing of the case base. 

 

Figure 3.27 - DialogLearn performing the learning of the XOR problem 

 

 

Figure 3.28 - DialogConsultCaseBase performing the testing of the XOR problem 

Figure 3.29 shows the DialogConsultUserCase class where the user has the chance of 
building a case to be presented for the ANN at runtime. In that case, the user did not select 
the Input 1 meaning that this input evidence must have value zero (false) as activation. The 
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selected Input 2 will have activation 1 (true). The evaluation of this case to the XOR learned 
Backpropagation network gave the output result of 0.866 that is a value next to the value one, 
meaning (true). 

 

Figure 3.29 - DialogConsultUserCase performing the testing of a user case 

Figure 3.30 shows a concrete sub-class of DialogConfig, the BPDialogConfig. The 
BPDialogConfig implements a Java Dialog where the user can choose the appropriate learning 
parameters for the Backpropagation ANN instance. As already explained before, this dialog 
must be implemented for each different ANN model. 

 

Figure 3.30 � BPDialogConfig class for the Backpropagation configuration 
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Figure 3.31 shows the DialogMoveSimulation class that implements a Java Dialog where 
the user can specify a host IP where to move the ANN instance. 

 

Figure 3.31 � Moving the ANN component to run in a remote machine 

The GUI components shown here are extensively used on the CANN simulation 
environment. They were built in order to form a basic GUI framework where the ANN 
programmer can use the GUI classes as they are and concentrate on the implementation of 
the ANN component. New ANN models can be easily added to this GUI framework in 
order to test its inner implementation. 

3.2.9 Packaging the frameworks in reusable components 

 �Components are units of deployment� (Clemens Szypersky 1997). Szypersky phrase 
focuses on the main reason for building components, the deployment of software. The core 
idea is that a component is any piece of software that can be delivered as a single unit and 
reused in systems other than the one it was planned for. In that way a component may be a 
class, a procedure, a module, etc. The software reusability capacity is directly related to the 
quality of the design and implementation of the software pieces.  

In this work the deliverable pieces of software are organized in classes and small 
frameworks that can be deployed and reused by a third party in order to solve problems 
involving ANN development. The created components were built in Java and packaged as 
JavaBeans, the components standard for the Java language. It was an important goal of this 
work to be able to provide the CANN components in a standard that other people have been 
adhering to, so that the components have a critical mass to use them. At the same time, it is 
not the intention of this work to compare different component standards or to provide the 
CANN components in other component standards. However, this work could be done in the 
future given the maturity of one or another component standard. 

The actual CANN framework implementation has some coding dependencies among 
the frameworks like the ANN and Domain framework or even the GUI framework. 
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However, the developer that understands the code done so far is able to reuse each of the 
frameworks individually. To evolve in order to reach a blackbox reuse level the CANN 
framework still has to mature. As mentioned before, there is the possibility of some design 
review in order to improve reusability especially at the level of the simulation and GUI 
frameworks. 

The CANN framework not only permits the reuse of source code but also the 
architecture design. The degree of reusability expected is then even bigger than considering 
only code reuse. For instance when developing the different ANN models in CANN, 
frameworks like Domain, Converter and GUI can be reused while code extension is 
necessary only to implement the specific characteristics of the ANN model at the level of 
ANN and Simulation frameworks, but keeping their architecture design as well.  

Code mobility in the form of objects or agents is an open problem in the component 
research area. There are no clear architecture standards and design patterns that facilitate the 
design and implementation of general solutions for component mobility. Chapter 5 explains 
the design of a solution for making the CANN components for ANN mobile. The main 
design guidelines and implementation issues may be applied not only to ANN components 
but also to any other kind of components. 

Two important aspects on the implementation of components were introduced quite 
late in the CANN implementation so that they still lack improvement. The first is the use of a 
tool for the proper documentation of the source code. In this case, the Javadoc technology 
was adopted. The second aspect is code versioning control. It is very important to keep the 
code under the guard of a versioning control system. It helps not only to keep the 
appropriate version relation among the components but also to track its design evolution.  

The development of the CANN framework may still evolve in some aspects. It is 
important to introduce a better error control and logging where the error levels may be better 
managed. There are Java API�s that can help with that implementation aspect such as the 
Log4J (Log4J Project). It is also important to build and/or find testing tools to test the 
components individually. The possibility of quickly creating tests for the new or extended 
components in order to verify the errors before coupling the components in a complete 
application helps the components developer. This kind of test reduces drastically the 
application errors. An interesting tool to be developed is also a RAD (Rapid Application 
Development) environment where the developer can quickly program by composition of the 
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CANN components. Such a tool may be useful not only for somebody who wants to apply 
ANN but also for didactic purposes. 

The next section analyzes how other authors approached the problem of designing and 
implementing ANN software, and how they relate to the CANN framework. 

3.3 Related Work 

This chapter introduces a selection of software solutions for the construction of 
ANNs. The study of these solutions was important to consolidate the author�s knowledge for 
the proposition of a software solution based on components. This study considers how the 
different solutions take care of design aspects such as modeling the ANN structure and 
implementing its functionality. It also considers how the different authors implement general 
code to be used by different models and by other people; in short, what the authors choose 
to be the reused code, and how it was engineered. It also analyzes simulation problems, such 
as memory and CPU allocation, implementation parallelism, etc.  

The first studied solution is the simulation software proposed by Freeman and Skapura 
(1992). They developed a software simulation environment in Pascal. Then, attempts to 
develop ANN software based on the object-oriented paradigm are analyzed in particular the 
works of Timothy Masters (1993), Ivo Vondrák (1994) and Joey Rogers (1997). Masters 
centers his work on giving tips on how to implement ANN different functionality in C++. 
Vondrák�s work is fully concentrated on designing a fully object-oriented solution to ANN 
software implementation. His language of choice was Smalltalk. Finally, Rogers also 
concentrates on designing object-oriented software to implement diverse ANN models in 
C++.  

3.3.1 The Freeman and Skapura (1992) solution 

In their work, Freeman and Skapura attempt not only to explain the ANN mathematics 
but also to give solid examples on how to implement ANNs. Undoubtedly they succeed on 
this task by offering a complete software solution for ANN development. The code is written 
in Pascal and is clear and precise. The authors propose two forms of organizing the ANN 
data structures: based on arrays and based on linked-lists. Each solution has its advantages 
and disadvantages. Both are analyzed in detail in this section. 
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3.3.1.1 Array-based ANN structures 

In such a solution, data is arranged by groups of linearly sequential arrays, each 
containing homogeneous data, such as sequential arrays containing connection weight values 
or neuron activation values. In the first case, each index of the array corresponds to a 
connection and in the second case each index corresponds to a neuron. This approach is 
useful to be fast in stepping through the neurons or connections once they are �represented� 
by simple indexes in arrays, and stepping over array indexes is fast. This approach is faster 
than using linked-lists (next section) where an address lookup has to be accomplished for 
each step. The drawback of such a solution is the lack of generality in regard to the size of the 
allocated networks.  

Figures 3.32 and 3.33 show how to map the ANN structure into arrays. The first figure 
shows a two-layer network where the lower layer of neurons produces individual outputs. 
Note that each neuron produces an output that is referred by O and indexed by a neuron�s 
sequential number. The connection weights among the lower and the upper layers are 
represented by W and indexed by the lower and upper neurons it connecs. The lower 
neurons are represented by the numbers from 1 to 5 and the upper neurons by the variable i. 

 . . . . . . 

W i 1 W i 2 W i 3 W i 4 W i 5 
O 1 O 2 O 3 O 4 O 5 

i 1 2 n - 1 n 

 

Figure 3.32 � Two-layer network weigh and output arrays (Freeman 1992) 

Wi1

Wi2

Wi3

Wi4

Wi5

weights i

O1
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O3

O4

O5

outputs

 

Figure 3.33 � Array data structures for computing neti (Freeman 1992) 

The array-based architecture can be described as follows: 
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• Each layer of neurons is represented by an array that stores its output. That is, 
for each neuron output there is one position on the array that stores it. The 
array index means the neuron index. 

• Each neuron output connects via a synapse to the neurons of the next layer. 

• Each neuron of the next layer will receive the outputs of the previous layer as 
input. 

• For each neuron of the receiving layer, there will be an array of weights. This 
array will have exactly the same size of the previous array of outputs. 

The sum-of-products (neti) is done in the following way:  

1. Iterate over the two arrays operating the product of each weight value with the 
corresponding output value (take the values using the same array index). 

2. The resulting product is stored in an auxiliary accumulator that must have been 
previously initialized to zero.  

3. Then the next index is considered and the same operation is done. The weight 
is multiplied by the output and the result is summed to the accumulator value.  

4. After iterating over all possible indexes (neurons), the calculation is finished. 

The operations over those arrays are based on indexes. As the arrays are statically 
allocated, the index iteration is, in fact, simply a pointer increment on the memory, being a 
pretty fast operation. 

It is clear that such a solution means building specific arrays for the specific ANN 
model in development. Also it is necessary to program-by-hard the relations among the arrays 
to form the proper model architecture. This solution is certainly not difficult to develop and 
may have good performance results, but it is not flexible for modifications. Any change of 
the model architecture may mean programming modifications at the level of the arrays 
constructions and relationships. Furthermore, the ANN cannot increase in size at runtime. 
All the necessary memory has to be allocated in advance. There are ANN models that can 
change in size dynamically (e.g. the CNM model), which makes this solution impractical. 
Sometimes the memory usage of an ANN model cannot be forecast. If the previously 
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allocated memory is excessive, not being totally used, a waste of resource will be 
characterized. If the allocated memory is not enough, the process may be stopped in the 
middle, being a waste of time.  

Another problem is that if the neurons of different layers are not fully connected, this 
solution will not work properly. For the connections that are not used it is necessary to 
introduce controls like indexes or consider connections (array positions) with null value. The 
sparser the net is or turns to be during the learning, the more losses in memory spaces and 
processing time will occur. The implementation turns out to be restrictive and complicated to 
extend. 

3.3.1.2 Linked-list-based ANN structures 

Here the arrays describing the neuron weights or the neurons layer outputs are 
implemented using linked lists. Each element on the list points to the next element. The 
elements can be allocated at run time making lists of any size possible. The connections 
among the different layers of the network may be also implemented via pointers and different 
approaches can be used to correctly build the architecture. Connection lists can be built to 
indicate to which inputs in an upper layer the output list neurons must be connected. 

Such a solution brings the advantage of generality on the architecture implementation 
and processing, once any ANN model can use the list navigation algorithm. But the 
disadvantages are twofold in relation to the array-based solution:  

• It allocates more memory to store the list pointers  

• It consumes more processing time by having to navigate over the links to 
access the data structures. 

Freeman then chooses to have arrays as data structures, but dynamically allocated, so 
that the arrays can be allocated at run-time, but their size is fixed once allocated. The 
advantage is also that the iteration inside the array is done via index, keeping the array 
performance quality.  

Figure 3.34 shows the layered structure that is used to model a collection of neurons 
with similar function. The first neuron computed output value is stored in its correspondent 
output index (O1) on the outputs array. The weight values of all input connections to the first 
neuron are stored sequentially in the W2j array. Those values are accessed to calculate the O1 
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output. The same happens to the other neurons in sequence. The neural network will manage 
as many layer arrays as necessary to implement the ANN structure.  
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Figure 3.34 � Layered structure (Freeman 1992) 

A 4x5x2 Backpropagation network can be taking as an example. It may manage three 
arrays for the input, hidden and output layers. The input layer would have only an outputs 
array since it does not have connections to a previous layer. The output values (4 values) 
would be filled with the input activation and are used to calculate the activation of the hidden 
neurons. The hidden and output layers would have an array of outputs and an array of weight 
pointers (weight_ptr) as seen in Figure 3.34. Each position of the weight_ptr array points to an 
array of weights. The number of positions on the weight_ptr array corresponds to the number 
of neurons on the layer (5 to the hidden layer and 2 to the output layer). The number of 
weights stored on each weights array corresponds to the number of connections each neuron 
of this layer has to the previous layer. In the example the hidden layer would have 5 elements 
on the outputs and weight_ptr arrays. Each weight array would have 4 weights corresponding to 
each connection to the input neurons. Similarly, it would happen to the output layer. It would 
have 2 elements on the outputs and weight_ptr arrays corresponding to its output neurons. Each 
weight array would have 5 weights corresponding to each connection to the input neurons. 

However, Freeman and Skapura do not focus on analyzing the two solutions in order 
to verify how much one is better than the other. Their preoccupation is to show what must 
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be done to simulate ANN and not how to implement the models. The empirical comparison 
of two methods such as those ones is not necessary in this work too. The work effort would 
be too high to find out results that can be easily forecast by previous knowledge on 
programming similar solutions for ANN building.  

The simulation based on vectors and matrixes has as advantage the fact that this kind 
of computation is widely used in scientific computation. Many computers have special 
hardware to process vectors like supercomputers that operate very efficiently with long 
vectors at the same time. As the ANN processing is massively parallel, it is possible to define 
parallel algorithms to make use of this computer capability. However, the main disadvantage 
of such a solution is the reduced reusability. The structured programming approach presented 
here has its inherent difficulties, such as the necessity of reprogramming parts of the code in 
order to be able to implement new algorithms, ANN models, learning rules, data interaction, 
etc. 

3.3.2 The Timothy Masters (1993) solution 

In his book �Practical Neural Network Recipes in C++�, Timothy Masters intends to 
address ANN beginners. The book quickly explains the several ANN paradigms introducing 
the mathematical aspects and briefly shows code examples for the relevant aspects. The 
coding is done in C++ and, in general, is formed by code pieces of the structured 
programming stile.  

The author does not apply OO aspects in the software implementation. There aren�t 
detailed explanations on the design used to implement the several models. He who wants to 
have more details about the implementation has to wade through to the full source code that 
comes with the book in an additional floppy disk. But this code is also not properly 
documented. There is a simple user�s manual that helps to run the software and provides few 
code comments. Therefore, the study of the core implementation aspects turned out to be 
complicated.  

Masters has defined a general top-level class for ANNs, called Network. The ANN 
structure is built in memory and as the implementation is done in C++, the programmer has 
to manage memory. Particular ANN methods are the following few ones: 

1. learn � do the learning process. 
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2. trial � calculate the output for a given input by evaluating the network. 

3. trial error � compute the training set error. 

It also implements save and restore methods for making the ANN structures persistent in 
file streams. It is possible to see in CANN INetImplementation class methods that implement very 

similar functionality to those above.2 

There are two subclasses of Network: LayerNet and KohNet. The first is the basis for 
building different multilayer-based ANN models. The second implements the Kohonen 
SOM model (Kohonen, 1984). Both subclasses have some methods for specific model 
computations such as �finding gradient� in LayerNet and �winner� in KohNet. 

There are only two other classes for the whole simulation environment: TrainingSet and 
SingularValueDecomp. The first implements the management of a collection of samples, which 
will be used for training. This functionality is important and the author shows, by 
implementing a separate class, the necessity of having it independent of the core ANN 
classes. The LayerNet class for the implementation of the regression algorithm uses the 
second. This class is completely out of the scope of the whole design. It implements 
something specific for a particular ANN model and is not important for the rest of the code. 
In most cases the author chooses to implement model particularities inside the specific 
subclasses of LayerNet. The SingularValueDecomp class is isolated and shows lack of designs 
and clarity of the system. 

The absence of more fine-grained classes to implement the ANN models and the 
presence of only few �virtual� (abstract) methods on the Network class shows that the design 
chosen by Masters is not much concerned with reusability of code. Most of the essential parts 
are coded inside each ANN subclass and not many can be reused. For example: the author 
implemented several mathematical functions in methods inside the specific ANN models 
such as: weight regression, simulated annealing, sigmoid function, gradient descent 
calculation, etc.  

Furthermore, if a careful reuse design approach had been done, certainly some code 
could be made generic by improving the interface of the top-level class Network. For example, 

                                                           
2 In Cursive character type the author comments that compares somehow the related work with CANN. 
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methods that manipulate weights of retrieve network results (winner), could be implemented 
in the generic class Network and be useful to other ANN subclasses. 

On the other hand, some code could be moved to specific subclasses such as the 
confusion method in the class Network, which certainly shouldn�t be there. The confusion is a 
method to help in classification networks, so that it could be added to a subclass that 
specifically groups networks that would be able to use it or need it. A class could be created 
to implement this facility and referred by any ANN that would use it. 

If considering OO design, Masters approach can be considered a further step in 
relation to Freeman that did not implement OO aspects. But his approach is still not mature 
in terms of OO design. Unfortunately, the comments on the code are not enough to have a 
clear understanding about the meaning of certain attributes and methods, and sometimes 
even some classes. It is not possible to make a profound analysis of the implementation 
within a reasonable amount of time but it is clearly few steps behind of being characterized as 
OO design and implementation. Finally, the author does not provide any design diagrams, 
the defined classes are few compared to the problem at hand, the methods are not generic to 
the classes that contain them, the code is organized as libraries of structured code, not as 
objects. 

3.3.3 The Ivo Vondrák (1994) solution 

In his papers (Vondrák, 1994, 1994a), Ivo Vondrák makes a parallel between the OO 
concept of message exchange among objects via appropriate methods usage and the 
exchange of information at the ANN. The collection of messages an object is able to react to 
forms its supported protocol. The ANN has a similar behavior where the nets have neurons 
that communicate to each other by signals transmitted by the connections among them. 
Therefore, Vondrák�s conclusion is that an ANN can be mapped into a computer model 
using the OO paradigm.  

Analogous to CANN, that OO solution resembles the objects in an ANN. Vondrák 
proposes objects to represent neurons, the interconnections among them, the layer of the 
connected neurons and the whole network. The operations on these objects represent the 
ANN tasks such as passing the signal, adaptation, self-organization and changing the 
topology. A hierarchy of classes is built to represent the various types of objects originated 
from the various ANN models to implement. 
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3.3.3.1 Hierarchy of Neurons 

The hierarchy of neurons is shown in Figure 3.35. Neuron is the top class, its subclasses 
define special behavior for different ANNs. The code that defines a Neuron is shown in Code 
3.6. 

Neuron

BinaryNeuron KohonenNeuron RandomNeuron SigmoidalNeuron

BipolarNeuron AdaptiveNeuron

IntervalNeuron

 

Figure 3.35 � Neuron hierarchy (Vondrák 1994) 

The Neuron class stores data necessary to compute its activation. The abstract method 
that does the activation calculation is called transfer. The subclasses of Neuron implement this 
function in the appropriate way regarding its ANN model. Here Vondrák chooses the 
unification metapattern (Pree, 1995) where the different behaviors of the Neuron types are 
implemented by a method that, is dynamically bound and that reacts in different ways in the 
different Neuron subclasses. Whenever a different behavior is necessary, a new subclass of 
Neuron shall be implemented. The remaining methods described in Code 3.6, are 
implemented operations that are general to all Neuron types. One method is used to initialize 
the neuron (initialize), another to add a signal to the neuron activation calculation 
(adjustPotential) and, finally, a method is implemented to check the actual neuron activation 
(getState). 
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Code 3.6 � The Neuron class (Vondrák 1994) 

class:  Neuron 
superclass: Object 
data elements: 
 potential “inner potential” 
 state  “state of the excitation” 
 threshold “threshold of the neuron” 
 name   “represented by number” 
message protocol: 
 initialize: aName “initialization of the neuron and setting a name” 
 adjustPotential: aFloat “add an input signal to the potential of the 
neuron”  
 transfer   “abstract method for the activation function” 
 getState   “returns the state of the neuron” 

Some Neuron types need to introduce other messages in its communication protocol, 
that means introducing new methods to perform activities specific to the ANN model it 
belongs to. In this case, once again the solution is to do subclassing. The subclasses will 
introduce the new method not implemented by the superclass. It is the case of IntervalNeuron, 
which introduces the method transferInterval to implement the possibility of assigning a state 
of excitation to the neuron controlled by an interval via its data elements minState and 
maxState. 

3.3.3.2 Hierarchy of Connections 

The connection between neurons is used to pass signals from one neuron to another. It 
also represents the first level of the topology of neurons defined by Vondrák. The 
implementation of the Connection class can be seen in Code 3.7. The Connection object stores 
the synaptic weight and references to the neurons it is connected to. Connection has a method 
to initialize it, a method called adjust to update the weight value and a third method called 
passSignal used to transfer the signal from the �first� to the �second� neuron connected to the 
Connection object. It is interesting that this connection is directional from one neuron to the 
other, from the first to the second, so that Vondrák�s model does not take into consideration 
that a connection could be bi-directional, even though it has the information about the two 
involved neurons on the connection.  

It is not clear whether it would be easy to change this �semantics� (direction) of the 
connection. Anyway the processing in the reverse direction, from �second� to �first� neuron 
could be done by overwriting the passSignal method or by defining a new method, in a 
Connection subclass, similar to passSignal but in the opposite direction. At least the ANN 
developer could create two connections, one from the �first� neuron to the �second� and the 
other from the �second� to the �first� neuron. 
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Code 3.7 � The Connection class (Vondrák 1994) 

class:  Connection 
superclass: Object 
data elements: 
 first   “first neuron from the couple of neurons” 
 second  “second neuron” 
 weight  “weight of the interconnection” 
message protocol: 
 initialize  “initialization of the connection” 
 adjust: aFloat “adjust a weight”  
 passSignal  “pass a signal from the first to the second 
neuron” 

There is one Connection subclass called IntervalConnection which implements the same 
behavior defined for IntervalNeuron where an interval state of excitation is possible. A new 
method passIntervalSignal is added to implement this behavior. 

Finally, it is possible to say that Vondrák�s Connection class is appropriate for the 
simplicity of its behavior. 

3.3.3.3 Hierarchy of Interconnections 

The class called Interconnections represents a set of connections among neurons defining 
a part of the whole neural network. Code 3.8 shows the implementation of this class in detail. 
The main role of this class is to determine the way the neurons shall be connected, thus being 
dependent of the specific ANN model. The class stores a dynamic collection of Connection 
objects. Similarly to the Connection class, it has the methods adjust and passSignal that have the 
same functionality yet applying it to the collection of connection objects it holds.  

Code 3.8 � The Interconnections class (Vondrák 1994) 

class:  Interconnections 
superclass: Object 
data elements: 
 connections  “dynamic collection of the connection” 
message protocol: 
 initWeights  “initialization of the weights of the connection” 
 adjust  “adjust weights of interconnections”  
 passSignal  “pass a signal between neurons” 
 add: aConnection     “add a connection” 
 remove: aConnection  “remove a connection from the collection” 

The subclasses of Interconnections implement the concrete solutions for the methods 
adjust and passSignal. Therefore, the hierarchy shown in Figure 3.36 is created. The subclasses 
also add specific methods to do the appropriate creation of the object and the appropriate 
connections, such as the method connect.  
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Interconnections

InterBAM InterHopfield InterMulti

InterBP

InterBPInterval

Grossberg Kohonen

 

Figure 3.36 � Interconnections hierarchy (Vondrák 1994) 

There is no class such as the Interconnections in CANN. The creation of the ANN structure is 

the responsibility of the components that implement INetImplementation interface (see Section 

3.2.2.4). They shall implement the abstract method generateNet that is called when the ANN must be 

built. Each specific component implements this method in its appropriate way. At first sight, the 

Interconnections object did not seem to be important, but with the experience of implementing four 

different models using the CANN framework, it is clear that it makes sense. The Interconnections plays 

the role of the concept of an ANN layer and is a possible element of code reuse. The creation of layers of 

interconnected synapses and neurons makes sense for all models and the code implementation is very 

similar to the differently implemented models. In CANN the grouping of sets of neurons is done using 

the Java Vector class and the Neuron class controls the connection among neurons. A class like 

Interconnections can encapsulate this functionality avoiding repetitive code such as interacting over 

the neurons vector.  

3.3.3.4 Hierarchy of Artificial Neural Networks 

Figure 3.37 shows Vondrák�s class hierarchy for ANNs. The class NeuralNet is the top 
class and its code is shown in Code 3.9. This class is responsible for putting together the 
layers of Interconnections to define the ANN topology. Its subclasses implement complementary 
methods to provide management for the functionality among the interconnections.  
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Figure 3.37 � Neural Network hierarchy (Vondrák 1994) 

The NeuralNet class implements two important methods: learning and run. The method 
learning is responsible for the adaptation functionality of the model by implementing the 
learning procedure for a training set. The method run is simply a recall information method, 
which means, it is used to test the previously adapted network with one case. The learning 
method receives as parameter aTrainingSet and the run method receives anInput. It is not 
possible to exactly infer from the text what those data types are, but they certainly are objects 
that implement some functionality that the NeuralNet subclasses are able to cope with. Those 
objects can have, internally, training or testing data already pre-processed or not to be applied 
to the ANN. This means that the NeuralNet objects can also do the pre-processing of data 
before applying it to the ANN structure (e.g. adjust method for interconnections). 

Code 3.9 � The NeuralNet class (Vondrák 1994) 

class:  NeuralNet 
superclass: Object 
data elements: 
 inter   “dynamic collection of the interconnections” 
message protocol: 
 initNet    “initialization of the neural net” 
 learning: aTrainingSet  “adaptation of the network”  
 run: anInput   “recall the information” 

Vondrák points out that the advantages of using the OO approach to build ANN 
software are �the direct reincarnation of the real nets into the computer model and the 
possibilities to reuse the already written code.� Also �the possibility to redefine or to extend 
hierarchies and adapt them for the solution of the concrete problem.� He finally points to the 
higher reliability of the code. 
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Even being the consulted material not extensive, it is clear that the design is elegant and 
promises to be a generic software solution for implementing ANN. 

3.3.4 The Joey Rogers (1997) solution 

In his book �Object-Oriented Neural Networks in C++� (1997), Joey Rogers probably 
wrote the most detailed publication so far about implementing ANN using the object-
oriented paradigm. Rogers uses OO programming techniques �to find the inherent object 
nature found in all neural networks to create a flexible set of reusable classes that simplifies 
the implementation of any NN architecture. The gain one should have is not only a tool 
chest of reusable objects to aid in the implementation of NN architectures, but learn the 
development process for creating such objects and realizing any new architecture.� 

This inherent object nature is the presence of neurons and connections among 
neurons, the synapses. So Rogers (1997), like Vondrák (1994) already did, built these basic 
ANN elements as objects and reused them for all implemented models. 

Rogers starts by implementing two base ANN classes: Base_Node and Base_Link. Those 
classes should have all functionality needed by any ANN model so that the programmer does 
not need to implement it again. The implementation of one model follows the other; the 
objects created for one are reused in the others. 

3.3.4.1 The Base_Node  Class 

The principal characteristics of the Base_Node class are: 

1. It processes input and produces output. 

2. It does not define how the node object processes information; the task is done 
in the subclasses.  

3. It maintains lists of connections to the associated nodes. Two linked lists are 
used to store associated nodes: one maintains the nodes that bring input to the 
node, the other the list of nodes that receive the output of this neuron. 

The Base_Link objects (explained later) do the connections among Base_Node objects. 
The Base_Link objects store two pointers, one to the source and one to the destination 
neuron. Therefore, the Base_Node objects point only to the links. Figure 3.38 shows an 
example of network formed by Base_Link (rectangles) and Base_Node (circles) objects. 
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The creation of those links will generate an additional overhead that is softened by the 
flexibility of creating any architecture and the functionality capability associated to this 
structure once the Base_Link objects also store the connection weight and can process 
information.  

The CANN Neuron class (see Section 3.2.2.1) does not have a list of input and output 

connections. It has only one list of input connections, e.g. a list of synapses that bring activation to the 

neuron. The neuron does not need to know what neurons are associated to its input because each 

synapse connected to it knows its source and destination neurons. There is no list of synapses associated 

to the neuron output. Once the synapse knows to which neurons it is associated, it is able to request the 

neuron output value whenever necessary. The list of synapses is maintained by Neuron as a Java 

Vector object. 

 

Figure 3.38 � Object representation of network topology (Rogers, 1997) 

The disadvantage of Rogers� solution is the necessity of managing many pointers. 
When implementing in C++ keeping those pointers consistently allocated generates a 
programming overhead. The programmer is responsible for allocating and deallocating those 
pointers being a highly error-prune solution.  
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Figure 3.39 � Neural Network Node hierarchy (Rogers, 1997) 

The Base_Node class hierarchy is shown in Figure 3.39 and its definition is shown in 
Code 3.10. The Base_Node stores a set of numeric �values� that is useful to store the results of 
any processing done inside the neuron. This set of �values� was created to make the class 
generic and to make it useful in several ANN architectures. It also stores �error� results in 
the same way. There are getter and setter methods for �values� and �errors�. This class also 
stores the node name and ID. The ID is used for certain iteration controls and for the object 
serialization.  

The Neuron class in CANN does not store a set of values but a single value, which is the neuron 

activation called currentActivation. The neurons also do not store name and ID because they are 

expensive data in terms of memory footprint. It would be waste of memory space to allocate a string to 

the name of each neuron in a CNM network where there could exist millions of combinatorial neurons. 

The ID is not necessary once the neurons are stored in Java Vectors, which are classes that have 

iteration facilities via indexes. Furthermore, the Java serialization and reflection engines guarantee the 

unique access to the objects not being necessary to have IDs to identify them. Another important 

contribution of Java is the error handling mechanism that allows a seamless treatment of exceptions in 

classes and methods. Therefore it is not necessary to store error codes inside the classes. 

Rogers� solution stores learning parameters in the node values instead of storing them 
in the ANN model structure. The GetValue and SetValue methods are used to get and set the 
necessary learning parameters for all nodes of the model. Sometimes some learning 
parameters are, in fact, necessary inside the neuron to be able to do the activation calculation. 
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However those values should not be stored inside the neurons because it causes a waste of 
memory by allocating space for storing the same value as many times as node instances exist. 
The natural solution would be to store those values at the ANN level and pass them by 
parameter to the nodes whenever necessary. 

Base_Node has constructor and destructor methods for allocating and deallocating the 
object�s internal variables. It also provides methods for saving its state to the disk - methods 
save and load that operate over an iostream, - and a print method to print its state to the 
standard IO. 

In the Java solution there is no necessity to implement the class destruction method because the 

destruction is provided automatically by the Java’s garbage collection engine. It is also not necessary to 

implement save and load methods for neurons and connections because the Java Persistence facility 

provides this automatically. Classes are only required to implement the Serializable interface in order to 

be automatically enabled to be serialized. In this case, instance variables that shall not be persistent 

shall be declared transient.  

The most important methods defined by Base_Node are certainly Learn, Run and Epoch. 
Those methods are abstract so that they are implemented only by the subclasses. The Run 
method defines the node operation when evaluating an input in �normal� operation, typically 
testing. The Learn method is used during the training process and the third method Epoch is 
important for unusual situations to reset values or to do special operations. 
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Code 3.10 - The Base_Node class (Rogers, 1997). 

class Base_Node            // Base Neural-Network Node 
      { 
      private: 
           static int ticket; 
 
      protected: 
           int id;             // Identification Number 
           double *value;      // Value(s) stored by this node 
           int value_size;     // Number of Values stored by this node 
           double *error;      // Error value(s) stored by this node 
           int error_size;     // Number of Error values stored by this node 
 
           LList in_links;     // List for input links 
           LList out_links;    // List for output links 
 
      public: 
           Base_Node( int v_size=1, int e_size=1 );     // Constructor 
           ~Base_Node( void  );                         // Destructor 
           LList *In_Links( void ); 
           LList *Out_Links( void ); 
           virtual void Run( int mode=0 ); 
           virtual void Learn( int mode=0 ); 
           virtual void Epoch( int code=0 ); 
           virtual void Load( ifstream &infile ); 
           virtual void Save( ofstream &outfile); 
           inline virtual double Get_Value( int id=NODE_VALUE ); 
           inline virtual void Set_Value( double new_val, int id=NODE_VALUE ); 
           inline virtual double Get_Error( int id=NODE_ERROR ); 
           inline virtual void Set_Error( double new_val, int id=NODE_ERROR ); 
           inline int Get_ID( void ); 
           inline virtual char *Get_Name( void ); 
           void Create_Link_To( Base_Node &to_node, Base_Link *link ); 
           virtual void Print( ofstream &out ); 
 
           friend void Connect( Base_Node &from_node, Base_Node &to_node, 
                                Base_Link *link ); 
           friend void Connect( Base_Node &from_node, Base_Node &to_node, 
                                Base_Link &link ); 
           friend void Connect( Base_Node *from_node, Base_Node *to_node, 
                                Base_Link *link ); 
           friend int Disconnect( Base_Node *from_node, Base_Node *to_node); 
 
           friend double Random( double lower_bound, double upper_bound ); 
      }; 

The CANN Neuron class has only one abstract method for both Run and Learn operations 

defined in Rogers’ Base_Node class because both do the same thing, e.g. calculate the neuron 

activation. The calculated activation is the same independently whether the ANN is in the learning or 

testing process. There is no similar operation like the one defined by the Epoch method. 

In case of the CANN Neuron class, the process of information is not left to the subclasses. The 

creation of subclasses of Neuron and Synapse is frequently done to implement the specialties of each 

ANN model. But the implementation of the activation function is done in separate subclasses of the 

class ComputationStrategy, which avoids the creation of nested subclasses for the same model just 

implementing various activation functions. Using the ComputationStrategy solution the activation 
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functions could be defined even at runtime by “plugging” in a new instance of a specific 

ComputationStrategy. That is the use of the separation metapattern instead of the unification 

metapattern. 

Finally there are �static� methods called Connect that implement the facility of 
connecting Base_Node objects through Base_Link objects. There is also a Disconnect method to 
undo such a connection.  

The “static” Connect methods defined by Rogers’ Base_Node class are also unnecessary in the 

CANN Neuron definition. The connection among neurons is done using a more generic method called 

generateSynapses that implements the connection of the input synapses to the neuron in the 

appropriate way the ANN model requires. The Disconnect method implemented by Rogers was not 

implemented in CANN Neuron class but it is certainly a good idea to have the chance to disconnect 

neurons on the fly. 

3.3.4.2 The Base_Link class 

The Base_Link class hierarchy can be seen in Figure 3.40 below.  

Base_Link

ADALINE_Link BP_Link

SON_Link BAM_Link Epoch_BP_Link

 

Figure 3.40 � Neural Network Links hierarchy (Rogers, 1997) 

The Base_Link class definition can be seen in Code 3.11 and has basically the same 
methods as Base_Node. It has specific methods to manage connections among its input and 
output neurons and to access them. Another extra method Update_Weight is used to update 
the stored weight value. 
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Code 3.11 - The Base_Link class (Rogers, 1997) 

class Base_Link   // Base Neural-Network Link class 
     { 
     private: 
 
          static int ticket; 
 
     protected: 
          int id;                     // ID number for link 
          double *value;              // Value(s) for Link 
          Base_Node *in_node;         // Node instance link is comming from 
          Base_Node *out_node;        // Node instance link is going to 
          int value_size; 
 
     public: 
          Base_Link( int size=1 );       // Constructor 
          ~Base_Link( void );            // Destructor for Base Links 
          virtual void Save( ofstream &outfile ); 
          virtual void Load( ifstream &infile ); 
          inline virtual double Get_Value( int id=WEIGHT ); 
          inline virtual void Set_Value( double new_val, int id=WEIGHT); 
          inline virtual void Set_In_Node( Base_Node *node, int id ); 
          inline virtual void Set_Out_Node( Base_Node *node, int id ); 
          inline virtual Base_Node *In_Node( void ); 
          inline virtual Base_Node *Out_Node( void ); 
          inline virtual char *Get_Name( void ); 
          inline virtual void Update_Weight( double new_val ); 
          inline int Get_ID( void ); 
          inline virtual double In_Value( int mode=NODE_VALUE ); 
          inline virtual double Out_Value( int mode=NODE_VALUE ); 
          inline virtual double In_Error( int mode=NODE_ERROR ); 
          inline virtual double Out_Error( int mode=NODE_ERROR ); 
          inline virtual double Weighted_In_Value( int mode=NODE_VALUE ); 
          inline virtual double Weighted_Out_Value( int mode=NODE_VALUE ); 
          inline virtual double Weighted_In_Error( int mode=NODE_VALUE ); 
          inline virtual double Weighted_Out_Error( int mode=NODE_VALUE ); 
          inline virtual int Get_Set_Size( void ); 
          inline virtual void Epoch( int mode=0 ); 
     }; 

3.3.4.3 The Feed_Forward_Node class 

This class provides the neuron functionality for implementing feedforward networks. 
Those networks generally have nodes that apply a simple threshold function as its neuron 
activation function such as the Sigmoid function. From this class Rogers derives the classes 
needed for the ANN models implemented later. 

3.3.4.4 The Base_Network class 

Rogers�s implementation of the Base_Network class can be seen in Code 3.12. It 
manages two arrays of Base_Node and Base_Link classes.  

That is pretty similar to what is done in the CANN NetImplementation class by implementing 

input and output neuron vectors (see Section 3.2.2.4). But there is no necessity of having the control of 

the connections (Synapses) in the NetManager class once they are controlled by the Neuron classes. 
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The methods Load_Nodes_Links and Save_Nodes_Links implement persistence, which is, 
once again not necessary in a Java implementation because of the automatic persistence 
engine of the Java language. The Base_Network class also has a Create_Network method that is 
abstract (virtual) giving to its subclasses the responsibility of implementing the network 
specific topology.  

The CANN NetManager class that defines the abstract method GenerateNet does the same. 

The Base_Network method Load_Inputs is also an abstract method and is used to 
standardize the loading of input values into the input nodes. Here Rogers expresses the 
necessity of having a standard way of feeding data to the ANN for the learning and testing 
processes.  

That is what was done by the implementation of the CANN Domain and Converter frameworks 

(see Sections 3.2.4 and 3.2.5).  

Finally, similar to the Base_Node class, a method is implemented called Epoch to execute 
one network operation epoch for all links and nodes. Other methods inherited by Base_Node 
such as Get_Value, Set_Value, Save, Load, Run and Learn, are overridden in the 
ADALINE_Network class. In general, those operations are extended to cope with the arrays 
of Base_Node and Link_Node objects contained in the Base_Network class. 

After checking the Base_Network definition, lets recheck Rogers�s class hierarchy for 
ANN in Figure 3.37. The BP_Network class implements the Backpropagation model. It could 
be derived from Base_Network class, but �to simplify things even further� and �to take 
advantage of the operations that have already been defined�, it was derived from the 
ADALINE_Network class. Nevertheless, the reason for deriving the BP_Network class from 
the ADALINE_Network class is not completely clear, but it is understandable. However, 
deriving models like Kohonen�s SOM from the Adaline model is pretty complicated to 
understand. Rogers does not explain why he decided to define SON_Network class as a 
subclass to ADALINE_Network. He recognizes they are completely different and says 
nothing about the possible similarities that could justify his design. Taking a closer look at the 
SON_Network implementation, one can conclude that it could perfectly inherit directly from 
Base_Network, avoiding the design misunderstanding. 
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Code 3.12 - The Base_Network class (Rogers, 1997) 

class Base_Network : public Base_Node     // Base Network Node 
     { 
     protected: 
          int num_nodes;                  // Number of nodes in Network 
          int num_links;                  // Number of links in Network 
          Base_Node **node;               // Array of base nodes 
          Base_Link **link;               // Array of base links 
 
          virtual void Create_Network( void ); 
          virtual void Load_Inputs( void ); 
          virtual void Save_Nodes_Links( ofstream &outfile ); 
          virtual void Load_Nodes_Links( ifstream &infile ); 
 
     public: 
          Base_Network( void );           // Constructor 
          ~Base_Network( void );          // Destructor 
          virtual void Epoch( int code=0 ); 
          virtual void Print( ofstream &outfile ); 
          virtual char *Get_Name( void ); 
     }; 

Clearly the class hierarchy constructed by Rogers does not reflect the real domain, 
which makes it difficult to understand, use and extend. The use of OO design in this case 
may be more complicated rather than helpful. Going even further, Figure 3.37 shows that 
Rogers�s ADALINE_Network derives from Base_Network class that derives from Base_Node 
class. This could be read like: Base_Network is a Base_Node; or a network is a node. This design 
is unnatural because nobody can see such hierarchy in the domain. Coad and Jourdon (1991) 
advise not to use generalization-specialization hierarchies for relations that are not found on 
the problem domain. It is simply wrong that a network is a specialization of a node.  

The justification of Rogers for such a design is: �Since the Adaline neural network 
receives inputs, processes those inputs, and produces an output, the Adaline neural network 
itself can be abstracted to the node model.� This justification is not enough since virtually any 
computation process implements this functionality of receiving and processing input and 
producing output, so that any class could be a subclass of his Base_Node class. 

The same kind of problem can be verified in the hierarchies for Feed_Forward_Node and 
Base_Link. Rogers derives Feed_Forward_Node class from the Base_Node class, and the 
definition for node classes of other models from the same Feed_Forward_Node class. He also 
derives SOM_Link and BAM_Link from ADALINE_Link. Both hierarchies do not reflect 
the problem domain.  

Probably the true reason why Rogers opted for such a design was the possibility of 
inheriting attributes and methods (abstract at most), which is not enough. He come up with 
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such a design because each model was built on the results of another previously implemented 
one. Because of this �sequential� implementation, he tried to reuse as much code as possible 
through inheritance, but ended up with an unnatural design.  

This approach used by Rogers is certainly not appropriate for building OO systems. 
For instance, the class hierarchy would be different if he had chosen to implement the 
Backpropagation model before the Adaline model, and so on. His design would be different 
also if he had considered many ANN models in advance and built as many general classes as 
possible, implementing the commonalties of the several models. Then, the hierarchy would 
probably be more general and reusable.  

Taking that idea into consideration, it is possible to imagine something similar to 
Rogers�s design by considering that ANN and neurons are both learning units. Then, it would 
be possible to have more general (simpler) learning units on the top of the hierarchy, such as 
neurons, and more specific and complex units behind, such as ANN models.  

3.3.5 Final Remarks 

This chapter introduces related work that also comes up with generic ANN software 
solutions. The main focus here was to understand the design choices made by the authors on 
modeling an object-oriented ANN system. Thus the result of the evaluation of these related 
works was the possibility to mature a design where good and bad aspects of those related 
works were considered. The list below points out some relevant aspects of them that were 
considered in the design of CANN: 

• The design should reflect the problem domain. 

• As performance is an important aspect in an ANN simulation, the classes 
should not include extra information that make them unnecessarily big in terms 
of memory footprint and also they should be optimized in terms of code 
implementation. 

• Allocation and deallocation of memory in C++ can be avoided using languages 
such as Java and Smalltalk. The drawback certainly is less performance. 

• It is an important feature that the ANN structure can be made persistent. 
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• There must be a way of implementing training set classes to make the 
integration of the ANN with the learning and testing data easier. 

• Neurons and synapses classes are the basic building blocks for constructing 
object-oriented ANN solutions. 

• None of the discussed work considers the separation pattern. In general, the 
code reusability and flexibility is given by subclassing and overriding methods. 

• None of the discussed work takes care of parallel and distributed solutions. 

CANN considers all of the above in its design and implementation. For a future 
version of the CANN implementation, several ideas can be reevaluated as already cited along 
the text.  

3.4 Conclusions 

This chapter illustrates how the uncompromising application of framework technology 
leads to the construction of ANN software with appropriate flexibility. The implementation 
of such a framework corroborates that a sound object-oriented design of neural network 
components delivers the expected benefits, which could not be provided by a conventional 
solution.  

An important goal of the component framework development was its usefulness in 
different application domains and reusability for different tools. The CANN components 
have been used for different purposes in different systems as expected. An early version of 
the CNM ANN component was applied to perform credit rating for the Quelle retail 
company. The very good results achieved in this work were one of the main motivations for 
constructing the CANN simulation environment. The numerical results of this work are not 
public domain.  

The developed ANN framework, specially the optimized CNM component (see 
Chapter 6) was the base for the implementation of the AIRA data mining tool 
(http://www.godigital.com.br). AIRA has been applied mainly in the area of personalization 
of web sites.  

The CANN simulation environment has been applied to weather forecast.  In the work 
described in (da Rosa et. Al, 2001a and 2001b), it is applied to rare event weather forecasting 
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at airport terminals. Rare events are difficult to forecast because, by definition, the experts do 
not have extensive experience with such events. Those events may make it difficult for an 
aircraft to land or take off, causing many problems like traffic controllers acting under stress 
situations, the aircraft having to land at another airport, etc.  

Even in an early stage, the CANN simulation environment has been used as a 
simulation tool for implementing a VMI solution (Vendor Managed Inventory) for an E-
Business company dedicated to implementing B2B solutions for supermarkets and its 
suppliers (http://www.mercador.com). 

The framework design has provided flexibility and reliability to those systems. The 
CANN framework components expanded from a classificatory system with only one learning 
algorithm to the possibility of implementing many different learning algorithms. The design 
permits the straightforward application of the different ANN models to different ANN 
domain problems. Different data sources are easily coupled with the domain problem at hand 
and applied to the ANN learning and testing processes. The design also allowed the 
framework to add other implementation facilities such as parallelization and distribution. This 
plays an important role to overcome the limitations of hardware that the ANN learning may 
face. The Java implementation also permits the necessary platform independence. 

The current design and implementation of CANN may be considered as a generic 
decision-making system based on neural networks. An ambitious goal would be to enhance 
the framework further, so that other decision support problems, like forecasting, can be 
supported. Also ambitious would be to allow the implementation of other learning 
mechanisms that do not rely only on neural networks, such as machine learning algorithms. 

Currently, most excellent frameworks are products of a more or less chaotic 
development process, often carried out in the realm of research-like settings. In the realm of 
designing and implementing CANN hot-spot-analysis was particularly helpful for coming up 
with a suitable framework architecture more quickly. An explicit capturing of flexibility 
requirements indeed contributes to a more systematic framework development process. 
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4  A N N  P a r a l l e l  I m p l e m e n t a t i o n  

One of the main concerns of implementing ANN is to take care of performance 
aspects. The software solution shall be carefully developed in the sense that it does its best to 
guarantee the ANN performance while performing learning and testing tasks. To improve 
the ANN performance, it is necessary to use the hardware platform as much as possible. The 
first step in this direction in the realm of the CANN project was to implement parallelism in 
the neural network learning and testing mechanisms. With such an implementation, machines 
with more than one processor (for instance 2 to 4 processors) improve the network 
performance.  

The parallel program design in ANN is an important aspect to be considered while 
developing a software solution such as the CANN framework. Thus, the goals of exploring 
parallel software implementation in this work are twofold: 

• To explore the possibility of having a generic parallel solution for the CANN 
framework. 

• To propose and implement a parallel solution for the CNM. 

The first goal is focused on exploring the state of the art in parallel implementations for 
ANN in order to understand the best solution for the simulation environment as a whole. 
The second goal is specific to the CNM which is an ANN model were parallelism still was 
not explored in detail, being a contribution to this model state of the art.  

4.1 Introduction 

The first step, in order to better understand how to implement parallel ANN solutions, 
is to take a look at structuring approaches for implementing parallelism in ANNs.  Kock 
(1996) proposes how to break the ANN structure from large- to fine-grained pieces in order 
to run them in parallel:  

• Training session parallelism � Train a given ANN simultaneously with 
different learning parameters in the same training examples. Typically different 
sessions are placed on different processors.  
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• Training example parallelism � Implementation of simultaneous learning in 
different training examples within the same session. A training set is split into a 
number of subsets and the corresponding number of network instances are 
trained simultaneously. The weights of each network instance are accumulated 
separately and at the end of the process they are brought together in one 
network. The different training subsets are distributed on the different 
processors.  

• Layer parallelism � It provides concurrent computation for layers. Layers are 
pipelined so that learning examples are fed through the network in a way that 
each layer works in a different training example. The different layers are 
distributed on the different processors.  

• Node parallelism � The ANN neurons perform weighed input summation 
and other computation in parallel.   

• Weight parallelism � It refines node parallelism allowing the simultaneous 
calculation of each weighed input. This form of parallelism can be implemented 
in most of the ANN models.   

• Bit serial parallelism � Each bit of the numerical calculations is processed in 
parallel. It is a hardware dependent solution. 

Implementing a generic solution for the CANN framework means that any 
implemented ANN shall naturally have a parallel solution. The mentioned implementations 
shall be considered in a generic solution. 

In general, there are four ways of implementing ANN algorithms: adapting or 
extending a preprogrammed simulator; developing the solution from scratch using a general 
purpose language; developing the solution using a ANN library based on a general-purpose 
language; and using an ANN specification language. Simulators in general lack flexibility and 
extensibility in terms of ANN parallel implementations so that the developers have to make 
their hands-on implementation. Parallel implementations of ANN simulation kernels are rare 
because a parallelization of the complete kernel is difficult. When doing so, the kernels have 
restricted functionality being applied to specific ANN architectures or models.  
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In the early nineties a major challenge of ANN development was to achieve maximum 
performance on parallel machines performing ANN tasks. The common strategy of these 
developments on general-purpose parallel computers (SIMD architectures like MasPar and 
MIMD architectures like IBM SP-2) was to speed up the processing using special 
characteristics of the target ANN architectures. That means implementing specific solutions 
to specific ANN models from scratch.  Special-purpose parallel neurocomputer architectures 
like CNAPS (Hammerstrom, 1990) or Synapse-1 (Ramacher, 1992) were also used. Such 
implementations were done using machine-dependent languages or libraries. The 
programmer is responsible for choosing how to partition the ANN structures in order to 
better use the available processors. This may not be optimal and may collapse if any ANN 
architectural change has to be done. 

Another alternative is to use libraries for the simulation of ANN like SESAME (Linden 
et al. 1993), MUME (Jabri et al. 1993) or PDP++ (Dawson et al. 1997). Such libraries are 
based on general-purpose languages and contain facilities for constructing ANN architectures 
and simulate them. They are neither suited for neurocomputers nor for parallel computers 
due to the underlying sequential programming language. 

Trying to avoid this, some specific languages for building ANN solutions were created. 
One example is CuPit (Prechelt, 1994). This language was specifically designed to express 
neural network learning algorithms. Its programs can be compiled into efficient code for 
parallel machines. Its advantages in terms of software design are the high expressiveness, 
clarity and ease of programming for implementing ANN learning algorithms. As the language 
is domain specific, it can result in more efficient code because it applies optimizations 
unavailable to compilers for general-purpose parallel languages. However, when compared to 
solutions built in sequential languages such as C/C++, the resulting code may be less 
efficient. Furthermore, this language does not support characteristics of object-oriented 
languages such as inheritance and neurocomputers were not supported as target architectures. 

Another more recent language for building ANN parallel solutions is the EpsiloNN 
(Strey, 1999). The EpsiloNN (Efficient parallel simulation of Neural Networks) was built to 
efficiently simulate ANNs on different parallel computer machines such as SIMD parallel 
computers and neurocomputers.  Object-oriented concepts such as classes and inheritance 
are applied to describe the ANN architectures.  Similarly to the CuPit language, EpsiloNN 
main building blocks for the ANN construction are neurons, synapses and networks. 
EpsiloNN does not rely on polymorphism and dynamic binding because they can only be 
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analyzed at runtime and forbid the computation of an optimal mapping at compile-time. The 
ANN specification is transformed into an appropriate simulation source code. It generates C 
ANSI code for sequential computers and adequate C dialects for parallel computers or 
neurocomputers.  

Neural networks in general execute few kinds of operations: local operations on 
neurons or synapses; reduction operations such as summing over all weighed incoming 
synapses; and broadcast operations such as applying a global parameter to all neurons. Those 
described operations may happen on local objects such as the neurons or on groups of them 
such as the incoming synapses of a neuron. Such kinds of operations lead to two nested 
levels of parallelism: Weight parallelism and Node parallelism.  The already cited languages for 
implementing ANN algorithms CuPit-2 and EpsiloNN implement Weight and Node parallelism 
having achieved very good results. The CANN solution goes in the same direction by 
implementing a generic solution to Weight parallelism that is explained in the next section. 

4.2 Towards a generic parallelization of the CANN framework 

In the CANN framework, objects such as neurons and synapses are implemented. A 
natural match to that is to implement weight and node parallelism. In CANN the neurons are 
objects that act as controllers of the synapses execution. Each neuron requests the execution 
of the synapses that are associated to it. It performs its own computation only when all the 
dependent synapses return the results of their own computation. Furthermore, the execution 
of the synapses objects are clearly independent from each other and from the other objects of 
the framework being good candidates to be run inside a thread. In fact, the synapses are 
responsible for the weighed input calculation, being already prepared for implementing the 
Weight parallelism. Complementarily, the neuron object is a good candidate to group and 
coordinate the execution of the synapses threads. 

Figure 4.1 below shows a CNM. Each synapse is drawn with a different line type 
representing one different running thread. During the CNM execution, the lower synapses 
that form one combination (leads to one combinatorial neuron) can run in parallel. The 
upper synapses executions also are completely independent from one another and are 
performed in parallel by independent threads coordinated by the hypothesis neurons.  
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Figure 4.1 - Threads on CNM, each synapse becomes a thread 

Such a solution can be applied to different ANN models by simply isolating the 
synaptic computations that are necessary to perform the computation of one neuron. The 
four ANN models implemented in this thesis could incorporate this solution (e.g. CNM, 
Backpropagation, SOM and ART1). However, in practice, tests of such implementation with 
the CNM model proved that this solution is too fine grained because a large number of 
threads with short processing times may be generated. The generation of an excessive 
number of threads turns the ANN performance to an unacceptable level and makes its 
management sometimes impossible at the level of operating system capabilities.  

Implementing Node parallelism could be a good alternative as a general solution for the 
CANN framework, but clearly the problem of generating a huge number of threads still can 
happen, depending on the implemented ANN and domain problem.  

Weight and Node parallelism led to good results on the already referred CuPit-2 and 
EpsiloNN languages certainly because they are capable to generate optimized code for 
parallel machines that are able to run efficiently such fine-grained operations contained on 
the synapses and neurons calculations. Such a solution in a general-purpose language like Java 
turned out to be inefficient. It is known that Java imposes a significant overhead on the 
threading execution, so that a comparison of the CANN solution and the other cited general-
purpose solutions are unfruitful. Furthermore, the different target hardware of the solutions 
makes such a comparison improper.  

The natural consequence of this first experiment is to look for more large grained 
parallel implementations. The CANN framework does not implement the concept of layer so 
that to implement a solution such as Layer parallelism is neither practical nor intuitive. It would 
be necessary to make changes to the inner code of the framework in order to implement it. 
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However, the implementation of layers as exposed ANN structures shall be done in future 
evolutions of the CANN framework. 

A general solution for parallelism on the CANN framework succeeds at the level of 
Training session parallelism. This approach was used to implement the CANN simulation 
characteristic of having more than one ANN instance running at the same time. The next 
section explains how this solution was implemented and used in the CANN simulation 
environment. 

4.2.1 The CANN parallel implementation  

The CANN simulation environment allows the execution of several ANN instances at 
the same time (Training session parallelism). The ANN�s are started in parallel inside separate 
threads. The termination of the execution of each ANN is independent from each other. The 
CANN simulation environment allows the parallel execution of different ANN instances 
from different ANN models.  

The parallel implementation was done at the level of the neural networks manager 
class. The network management classes are subclasses of the abstract class NetManager that 
can be partially seen in Code 4.1 below. This class predefines that any of its subclasses 
implements the interface Runnable that means they can start thread executions. It also defines 
that its subclasses shall implement a method called netManagerStarter that shall be used to start 
the ANN learning inside a thread called netLearnThread. Code 4.1 also shows part of the class 
CNMManager, where the method netManagerStarter is implemented and the thread is created 
and started. The method run is also shown where the inner execution of the thread is defined. 
The variable threadBody defines what method to call inside the created thread defining the type 
of execution the ANN must run. The class may run the network inside a thread for the 
normal CNM learning algorithm, the optimized learning algorithm or even for the testing of 
the already trained network. 



University of Constance 

Computer & Information Science 

 

 

Software Research Laboratory 
A Component Architecture for 
Artificial Neural Networks 
Fábio Ghignatti Beckenkamp 
June 2002 
Page 148 

 

Code 4.1 � Parallel implementation 

public abstract class NetManager extends Object implements Serializable, Runnable { 
  //… 
  transient Thread netLearnThread; 
  abstract public void netManagerStarter(); 
  //… 
} 
 
public class CNMManager extends NetManager { 
  void netManagerStarter() { 
    netLearnThread = new Thread(this,"Thread Learn"); 
    netLearnThread.setPriority(parameters.thePriority); 
 
    if (netOptimization == true) {// If Optimized learning 
      // sets optimized learning parameters 
      // … 
    } 
    else { 
      // sets original learning parameters 
      // … 
    } 
    netLearnThread.start(); 
  } 
 
  // calls the appropriate simulation method 
  public void run() { 
    switch (threadBody) { 
      case CONSULT_CASEBASE: // Consulting Case Base 
        runConsultCaseBase(); 
      break; 
      case STARTER_LEARN: // Learning Case Base 
        runLearnCaseBase(); 
      break; 
      case OPTIMIZED_LEARN: // Optimized Learning Case Base 
        runOptimizedLearnCasebase(); 
      break; 
    } 
  } 
//… 
} 

The called method inside the run method is responsible for calling the appropriate 
INetImplementation instance to execute its tasks. In this way, each ANN instance in the CANN 
framework can run inside an independent thread. Figure 4.2 sketches the implementation 
framework.  
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Figure 4.2 � The parallel architecture solution 

The CANN simulation environment allows the user to create many ANN instances at 
the same time grouping them in a Vector. The user can start the execution of the ANN at any 
time.  

4.2.2 CANN parallel solution test results 

The main goal of the tests is to verify check whether the fact of having different 
instances of ANN�s running at the same time will influence the ANN performances. The 
proposed test measures the performance of two different ANN instances when running 
alone and when running together, sharing the machine resources. The same test was 
performed on different machines with one and two processors, to verify the behavior of the 
solution when the CPU is shared and when two CPU�s can be allocated. The first machine is 
a Pentium III 550 MHz with 256 Mb of RAM and the second one is an IBM Netfinity 3000 
with 2 Pentium III 667 MHz processors and 512 Mbytes of RAM. 

The two selected nets were the Backpropagation and the SOM. The time each network 
took to perform its learning process was measured. The Backpropagation network ran 10000 
epochs to learn the XOR problem and the SOM ran 5000 epochs to learn the Bi-
Dimensional problem. The start of the learning process is manual for both networks using 
the CANN GUI. Therefore, one shall be started before the other. The SOM network was 
started first.  



University of Constance 

Computer & Information Science 

 

 

Software Research Laboratory 
A Component Architecture for 
Artificial Neural Networks 
Fábio Ghignatti Beckenkamp 
June 2002 
Page 150 

 
Table 4.1 - Networks running on a machine with one CPU 

Network Standalone Parallel 

BP 14843 ms 20812 ms 

SOM 10750 ms 21429 ms 

Table 4.1 shows the results when the tests where performed on the single CPU 
machine. The column Standalone shows the time average the networks took to perform the 
learning running each one in a different time frame, not competing for the CPU. The column 
Parallel shows the time average when they were executed in parallel. The results show that 
when running in parallel both networks spend more time to perform the learning individually, 
however, as they are running together, the total time is simply the time the last net took to 
learn. When running them separately the time of both shall be summed. The Figure 4.3 
shows the difference of running the ANN sequentially and in parallel. Running the 
Backpropagation and the SOM separately would take on average 25593 ms (14843 ms + 
10750ms), while running together it would take on average 21429 ms (time SOM took to 
finish, the BP certainly had finished before). Thus, it is worth running the networks in parallel 
even with a one CPU machine. 

 

Time (s) 

BP and SOM in parallel

BP sequential

SOM  sequential

10.8 21.4 25.5
 

Figure 4.3 � The time difference between running in parallel and sequentially 

The Speed-up (Sp) calculus (Hwang & Xu, 1998), reinforces this conclusion. It is a 
simple acceleration factor that is given by the reason of the sequential time (st) by the parallel 
time (pt) as can be seen on Equation 4.1 below. 
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pt

st
Sp =  

Equation 4.1 � Speed-up 

Taking the sequential time as the addition of the sequential times for the 
Backpropagation and SOM execution (25593 ms) and for the parallel time the SOM time 
(21429 ms), the Speed-up will be 1.19 (Equation 4.2). It means that running the two networks 
in parallel it will be 1.19 times faster or 19% faster. 

19.1
21429

10750  14843 =+=Sp  

Equation 4.2 � Speed-up for running BP and SOM in parallel in a single CPU 

For the machine with two CPU�s, more tests were performed. The first test was to 
verify the performance of the Backpropagation running standalone and with two instances at 
the same time. Table 4.2 shows the standalone performance average of the Backpropagation. 

Table 4.2 � Backpropagation running standalone in a 2 CPU�s machine 

Network Standalone 

BP 5500 ms 

Table 4.3 shows the performance when two instances of the Backpropagation run 
during 10000 epochs on the 2 CPU�s machine.  

Table 4.3 � Two Backpropagation instances running in parallel in a 2 CPU�s machine 

Network Parallel 

BP 1 8367 ms 

BP 2 8586 ms 

Once again it was worth running two ANN�s at the same time, considering that, on 
average, running two instances of Backpropagation at the same time is faster than running 
them in sequence. The Speed-up for this execution is given in Equation 4.3 below. The 
sequential time is given by the execution of two Backpropagation simulations sequentially 
and the parallel time is given by the longest execution of the two parallel Backpropagation 
simulations. The Speed-up result is that the parallel execution is 28% faster than the 
sequential one. 
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28.1
8586

5500 5500 =+=Sp  

Equation 4.3 � Speed-up for running BP in a 2 CPU machine 

Figure 4.4 shows the processors being allocated to perform the execution of the two 
Backpropagation simulations in parallel. The two CPU�s are nearly 100% allocated during the 
simulation period.  

 

Figure 4.4 � Two CPU�s running two Backpropagation instances in parallel 

Table 4.4 below shows the average time for running the learning of one instance of the 
SOM network in the machine with two CPU�s. Table 4.5 shows the average time two SOM 
instances take to run in parallel on the same machine.  

Table 4.4 � SOM running standalone in a 2 CPU�s machine 

Network Standalone 

SOM 8555 ms 
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Table 4.5 � Two SOM instances running in parallel in a 2 CPU�s machine 

Network Parallel 

SOM 1 8974 ms 

SOM 2 8760 ms 

There is no significant difference between running the SOM as a standalone learning 
process or running two learning processes at the same time. The Speed-up for this execution 
is given in Equation 4.4 below. 

90.1
8974

8555 8555 =+=Sp  

Equation 4.4 � Speed-up for running SOM in a 2 CPU machine 

This clearly shows the significant advantage of having such a parallel solution for 
running the SOM learning. During the same time frame two networks can be learned instead 
of one, the parallel solution for the SOM simulation is, on average, 90% faster than the 
sequential one. 

Table 4.6 shows the learning time when two instances of different ANN�s run in 
parallel on the machine with two CPU�s. The Backpropagation instance took a little more 
time than when running standalone and the SOM instance once again presented a similar 
performance average.  

Table 4.6 � Backpropagation and SOM instances running in parallel in a machine with two CPU�s 

Network Parallel 

BP 6510 ms 

SOM 9291 ms 

The results confirmed that it is worthwhile simulating different ANN models at the 
same time on the same machine. The Speed-up for this execution is given in Equation 4.5 
below. The parallel execution was 51% faster than running sequentially. 

51.1
9291

8555 5500 =+=Sp  

Equation 4.4 � Speed-up for running BP and SOM in a 2 CPU machine 



University of Constance 

Computer & Information Science 

 

 

Software Research Laboratory 
A Component Architecture for 
Artificial Neural Networks 
Fábio Ghignatti Beckenkamp 
June 2002 
Page 154 

 

Figure 4.5 below shows the allocation of the CPU�s during the Backpropagation and 
SOM instances learning. 

 

Figure 4.5 �Two CPU�s running Backpropagation and SOM instances in parallel 

It is important to note that running more than one ANN in parallel inside the CANN 
simulation environment may lead to performance bottlenecks. Depending on the number of 
nets running simultaneously and the size of those nets, the machine resources can be dried 
out fast.  

CANN runs in one Java runtime, receiving a main controller process. The threads 
created for the ANN�s will allocate the resources of this process. For each created ANN 
instance, its threads will make use of the same memory and CPU footprint that was allocated 
for the other ANN instances inside the same process. So it is important, when running more 
than one ANN using CANN, to clearly understand the ANN necessities of CPU and 
memory footprint as well as the machine resources and Java runtime issues. It may be better 
to run some ANN instances on separate machines to avoid competing for the CPU and 
memory given the number of CPU�s and threads to create and the available memory. Further 
tests could be elaborated and performed to measure such situations in order to map the exact 
implications of running parallel ANN�s in the CANN simulation environment.  
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To be able to extend the possible resources for running the parallel ANN instances an 
extension of this general solution is presented in Chapter 5 where the Training session parallelism 
allows the implementation of parallelism by distributing the different ANN models on the 
networked computers for learning and testing processes.  

The solution presented here is general enough as a good solution for the CANN 
framework. However, it does not take into consideration the parallelism inherent to the 
specific ANN models. As a general solution is difficult at such a level, as already explained, it 
is important to do some investigation on how to implement the parallelism at least for the 
CNM model, which is the model where parallelism could lead to significant gains due to the 
inherently structure of CNM nets. Such an investigation can also help evaluate the CANN 
architecture as well. Next section explores the possibilities for implementing parallelism for 
the CNM. 

4.3 A parallel solution for the CNM 

The CNM model is a CPU intensive network. Depending on the problem domain it is 
modeled for and the chosen combination order the network can have an enormous size and 
its learning time can take days. That�s why it is important to invest time in the optimization of 
the CNM learning time. Fortunately the CNM has an inherent parallel structure, though 
implementing parallelism is quite straightforward.  

Figure 4.6a shows a first approach to separate the CNM network into parts that can 
run in parallel. This subdivision is based on the fact that the whole network combinatorial 
structure is independent for each Hypothesis (upper neurons). Only the input neurons are 
shared resources that shall be synchronized. To this approach, one thread is created to 
manage the learning process of each Hypothesis Neuron instance. The set of combinations 
that forms the hypothesis is run inside the thread.  
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Figure 4.6 - Using threads on CNM 

A natural evolution to this solution can be seen in Figure 4.6b where more than one 
thread can be defined for each hypothesis. Each combination that forms the set of 
combinations for each hypothesis is also independent of each other. As a consequence, the 
set can be subdivided into subsets of combinations. Each subset can run as an independent 
thread. Inside a subset, the combinations are evaluated in sequence. The user can define the 
number of threads to perform the set of combinations (number of subsets). This number 
cannot be bigger than the number of combinations of the set.  

The solution proposed above can be considered as a variation of the Training example 
parallelism. The training set was not subdivided into subsets but the CNM was split into many 
parts where each part learns separately to be glued together at the end of the learning process. 
Constructing separate instances of parts of the CNM network is appropriate once the 
execution of each ANN combination is independent of each other. The constructed solution 
can also be considered a variation of the Node parallelism because different neurons in the 
same level run in parallel. Each neuron is used as a coordinator for the running of the 
synapses inside independent threads. However, the threads are created only at the level of the 
hypothesis neurons and not at the level of combinatorial neurons.  

The implemented solution scales well. It optimizes the use of threads according to the 
size of the combination layer and the machine capabilities. In the next section, the 
implementation of this solution is explained in detail, and its results are also extensively 
evaluated in order to show that this is an appropriate approach to implement parallelism for 
the CNM model. 
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4.3.1 CNM Parallel implementation  

The solution shown in Figure 4.6b and explained above can be implemented on the 
CANN framework in a systematic way. The object-oriented architecture and the 
implementation in the Java language facilitate the use of threads. The proposed solution 
implements the Group Proxies (Lea, 1999) design pattern that is applied for implementing 
partitioned concurrent activities in Java. A group consists of all members of some arbitrary 
set, for instance a set of CNM combinations. Group Proxies are protocol adapters that 
manage multiple threads controlled by multiple objects; for instance, the hypothesis neurons 
control the threads that contain the sets of combinations.  

The Group-based design makes it easy to increase parallelism transparently when there 
are multiple CPU�s, and whenever there is a good reason to partition a problem into parts 
that can be run concurrently. That is exactly the case of the CNM model. Group Proxies 
consider complex features such as the controlling of adding or removing members of the set 
that are not used in this work.  

The Group Proxies pattern implements the design necessary to perform multithreaded 
delegation, also known as a form of scatter/gather processing (Lea, 1999). Figure 4.7 shows 
the interaction diagram of the Group Proxy pattern and Code 4.2 an algorithm for 
implementing it. The core algorithm logic is implemented in a method called op() that 
implements the scatter and gather parts of the thread control. The scatter part of the code is 
used to start the necessary threads and the gather shall make the execution join of the started 
threads. The gather part is also responsible for collecting results that will be returned by the 
op() method. 
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Code 4.2 - Group Proxies algorithm 

public interface AnInterface { 
 public ResultType op(ArgType arg); 
} 
 
class GroupProxy implements AnInterface { 
 public ResultType op (ArgType arg) { 

// “Scatter” phase 
split the problem into parts; 
for each part { 
 start up a thread performing its actions; 
} 
 
// “Gather” phase 
wait for some or all threads to terminate; 
collect and return results; 
} 

} 

 

 

scatter 

op 
client proxy 

return 

members 

gather 

 

Figure 4.7 - Group Proxies interaction diagram 

Code 4.3 sketches the computeEvidentialFlow method from the CNMImplementation class. 
The method implements the choice of performing the CNM learning or testing processes 
(evidential flow) serially or in parallel. The learning and testing processes are implemented in 
the CNMManager class. In case of running serially, for each hypothesis neuron the method 
serialStartEvidentialFlow of the class CNMHypothesisNeuron is called. The evaluation of each 
hypothesis is performed in sequence. The evaluation of each combination inside the set of 
combinations of each hypothesis is performed in sequence as well.  

When running in parallel, the method startEvidentialFlow of the class 
CNMHypothesisNeuron is called for each hypothesis neuron. This method creates threads for 
running the evidential flow of the hypothesis neuron. The created threads are returned in a 
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vector. The method computeEvidentialFlow is responsible for performing the join of all threads 
started by each hypothesis neuron.  

The method computeEvidentialFlow implements the Group Proxy pattern by 
implementing the scatter and gather phases. When the method calls the startEvidentialFlow of 
the class CNMHypothesisNeuron it is controlling the starting of the parallel threads execution, 
implementing the scatter phase. When it makes the join of the started threads it is 
implementing the gather phase. The gather phase of the computeEvidentialFlow implements an 
AND termination where all the threads are waited to terminate. Besides this, it does not 
return any result because they are already contained on the CNMHypothesisNeuron class that 
implements the threads execution and can be accessed by the caller class CNMImplementation. 

Code 4.3 � The computeEvidentialFlow method 

/* 
* Implements the calling of the evidential flow for hypothesis neurons 
*/ 
void computeEvidentialFlow() { 
  // compute the evidential flow = propagate evidences 
  if (!parallelExecution) { 
    for each hypothesisNeuron do { 
      // sets initial variables 
      //… 
      hypothesisNeuron.serialStartEvidentialFlow(parameters); 
    } 
  } 
  else { 
    // create threads for running sets of combinations 
    // scatter phase 
    Vector hypothesisThreads = new Vector(); 
    for each hypothesisNeuron do { 
      // sets initial variables 
      //… 
      hypothesisNeuron.startEvidentialFlow(parameters); 
    } 
    // make the join for all hypothesisNeurons Threads 
    // gather phase 
    try { 
      for each hypothesisThread do  
        hypothesisThread.join(); 
 
    } 
    catch (InterruptedException ex) { 
      for each hypothesisThread do  
       hypothesisThreads.stop(); 
    } 
  } 
} 

Code 4.4 was picked from the CNMHypothesisNeuron class. It shows the 
startEvidentialFlow method. The set of combinations associated with the hypothesis neuron is 
divided into subsets. Each subset is encapsulated in a thread that is created and started.  
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Code 4.4 � The startEvidentialFlow method 

/* 
* Computes Fuzzy And (minimum) or Fuzzy OR (maximum) 
*/ 
Vector startEvidentialFlow(CNMHypothesisNeuron upNeuron, Vector auxParameters) {  
  // sets initial variables 
  //… 
  neuronThreads = new Vector(); 
 
  if (incomingSynapses.size()<hypothesis.getNumberOfThreads()) 
    hypothesis.setNumberOfThreads((short)incomingSynapses.size()); 
 
  // gets the rest of the division; if odd the last loop must have one more element   
  lastLoopRest = incomingSynapses.size()%hypothesis.getNumberOfThreads(); 
  loopSize = (int)incomingSynapses.size()/hypothesis.getNumberOfThreads(); 
 
  // starts the threads based on the number of threads set by the user 
  // each thread controls the execution of a set of combinations 
  for (int i=0; i<hypothesis.getNumberOfThreads(); i++) { 
    // wait for variables loopBegin and loopEnd in use by the previous thread 
    while (loopNotConsumed) {};  
     
    neuronThreads.addElement(new Thread(this, "Thread "+hypothesis.getName()+"->"+i)); 
    loopNotConsumed = true; 
    loopBegin = loopSize*i;    
    if ((i == (hypothesis.getNumberOfThreads()-1))) 
      loopEnd = (loopSize*(i+1)) + lastLoopRest; 
    else 
      loopEnd = loopSize*(i+1); 
    ((Thread)neuronThreads.elementAt(i)).setPriority(5); 
    ((Thread)neuronThreads.elementAt(i)).start(); 
  } 
  return (neuronThreads); 
} 

4.3.2 CNM parallel solution test results 

Table 4.7 shows the resulting tests of this parallel solution. The tests were performed 
on an IBM Netfinity 3000 with 2 Pentium III 667 MHz processors and 512 Mbytes of RAM. 
The CNM was configured to run the credit analysis problem with order 4 and without 
optimizing the learning. The learning parameters were acceptance threshold 0.6 and pruning 
threshold 0.4. 

The network performance was tested first without any thread so that the neural 
network learning process was performed serially. The other four tests are parallel executions 
with 2, 4, 8 and 16 threads. Each configuration was tested three times and the time and 
memory usage averages can be seen in Table 4.7. The speed-up results of the parallel 
executions are also shown in Table 4.7 in order to clearly show when the parallel solution is 
desirable and when it is not. While the Speed-up is greater than 1.0 the parallel execution has 
better performance than the serial one. 

Table 4.7 � Time and memory results 

Net Configurations Time Memory Speed-up 
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Mono (1) 57.30 31120 1.0 

2 Threads (2) 36.68 35888 1.56 

4 Threads (3) 49.58 35328 1.15 

8 Threads (4) 69.05 35880 0.82 

16 Threads (5) 99.84 35652 0.57 

 

The memory usage is nearly the same for all cases. The time to perform the learning 
was significantly better when using the parallel solution for 2 threads. Using 4 threads the 
performance is still better. As expected when the number of threads increases, the 
performance starts to degrade. It can be even worse than running the network serially. Figure 
4.8 below clearly illustrates this scenario where the polynomial curve describes the behavior 
of improving the number of threads when running in the same machine. The reasons for this 
behavior are twofold: the thread management takes time; and there is a limit for optimizing 
the performance using two processors. It is not just by chance that the best performance 
happens when there are two threads running, one in each processor. In fact, the management 
of many threads without the possibility of executing them in parallel decreases the 
performance progressively. When there are more active threads than there are CPU�s, the 
Java run-time system occasionally switches from running one activity to running another, 
which also entails scheduling � figuring out which thread to run next (Lea, 1999). 
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Figure 4.8 � Speed-up for the CNM parallel solution 
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Figures 4.9 to 4.13 below show snapshots of the Windows Task Manager for each of 
the tested network configurations. It starts with Figure 4.9 that shows the performance of the 
ANN when running serially.  

4.3.2.1 Test 1 – Running serially 

The first processor is responsible for running the ANN. The second processor also 
spends some time performing other tasks not related to the ANN but to the Java 
environment control/synchronization. It is clear that the performance of this configuration is 
not optimal because the processors are not 100% used during the processing time. The 
system varies the usage of the CPU�s very much. It is known that Java methods employing 
synchronization can be slower than those that do not provide proper concurrency protection. 
The ANN below runs one thread only, but with synchronization implementation, so that it is 
not a simple implementation with any concurrency control. Between thread and 
synchronization overhead, concurrent programs can be slower than sequential ones even if 
the running computer has multiple CPU�s (Lea, 1999). 

 
Serial Test 
Memory usage average: 31120 Mbytes 
Time average: 57.30 s 
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Figure 4.9 � Time performance for serial implementation 

4.3.2.2 Test 2 – Running with 2 threads 

The next test configuration shows the results when using 2 threads to perform the 
learning. Figure 4.10 shows the usage of the two processors during the neural network 
execution. The execution for both processors is similar, each one taking care of the execution 
of one thread. The processors spend nearly 100% of its capacity performing the ANN 
learning during the time they are allocated to do that, in opposite to the serial solution where 
no processor is allocated to its maximum capacity during the learning process. The first small 
hill, that is very close to the main plateau and that can be seen in the performance of both 
processors, is the processing time used for generating the ANN combinations. The main 
plateau indicates that the ANN is performing the learning and the next small hill corresponds 
to the ANN pruning. 

 
2 Threads 
Memory usage average: 35888 Mb 
Time average: 36.68 s 

 

Figure 4.10 � Time performance with 2 threads 
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4.3.2.3 Test 3 – Running with 4 threads 

When running with four threads, the performance decays a little bit. Figure 4.11 
corroborates that the processors are not 100% allocated during the learning process as 
happened on the previous configuration with 2 threads. The reason for that is the time lost 
with scheduling the threads during the learning process. Each thread receives a time slice, and 
the change from one thread to another makes the processing time not as optimal as when 
there are no threads to swap. 

 
4 Threads 
Memory usage average: 35328 
Time average: 49.58 

 

Figure 4.11 � Time performance with 4 threads 

4.3.2.4 Test 4 – Running with 8 threads 

Having more than 4 threads does not improve the learning performance for the tested 
machine as can be seen in Figure 4.12. It would be necessary to have a machine with more 
processors to allow more threads at the same time to be able to keep improving performance. 
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8 Threads 
Memory usage average: 35880 
Time average: 69.05 s 

 

Figure 4.12 � Time performance with 8 threads  

4.3.2.5 Test 5 – Running with 16 threads 

After a certain number of threads, the performance is getting worse. The test with 16 
threads (Figure 4.13) shows a performance more than 50% worse than the learning without 
parallelism. 
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16 Threads 
Memory usage average: 35652 
Time average: 99.84 s 

 

Figure 4.13 � Time performance with 16 threads  

 

4.4 Conclusions 

Implementing parallelism in neural networks is not a straightforward task. In general it 
requires complete control on the ANN software architecture in order to reproduce specific 
parallel software structures and control mechanisms. Implementing such structures and 
mechanisms in a pre-defined framework may be difficult because it is necessary to deeply 
understand the framework in order to get its benefits. Typically, adequate extensions to core 
classes� become necessary.  

The first attempt to implement a generic solution for the CANN framework failed. The 
implementation of parallelism at the level of each synapses (Weight parallelism) proved to be 
too fine-grained, leading to performance problems. The second solution was to implement 
the parallelism at the level of Training session that means to have different ANN instances 
running in parallel. This approach was successful showing that more than one ANN can 
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share the CPU resources without degrading its performance. In that way many ANN 
instances can run in parallel in order to find a solution for a given problem. The number of 
ANN instances able to run in parallel depends only on the ANN models resource allocation 
and the available machine resources. 

Another successful experiment in implementing parallelism in this work is to consider 
the parallel solution for a given ANN model, taking into consideration its specific 
architecture particularities. The architecture of each ANN model defines its possible parallel 
solutions. As the architectures differ very much from model to model, it is difficult to have a 
generic parallel solution. However, the CANN framework facilitates the parallel 
implementation by giving exact entry points for implementing thread control such as the 
startEvidentialFlow and computeEvidentialFlow methods. There is a clear separation of ANN 
architectural parts such as neurons, synapses and management components such as 
NetImplementation and NetManager. For instance, the management components implement 
methods that specifically control the ANN execution for learning and testing processes.  

Given those facilities, it is straightforward to implement a parallel solution for the 
CNM model. It is important to reinforce that this implementation is unique; there are no 
other parallel implementations for the CNM model so far.  

A positive consequence of having a specific parallel solution for the CNM model is that 
it performs properly, leading to performance improvements. The performance of the ANN 
execution can be better when running in parallel as shown by the tests. The CNM parallel 
solution can accommodate the usage of the available hardware resources leading to better 
hardware usage during the learning and testing processes. It is possible to create an 
appropriate number of threads in order to get the best results from the number of available 
CPU�s. The drawback is that the solution is specific for this model. It is intrinsically 
implemented on its architecture and cannot be extended to other ANN models. It would be 
an important future implementation experiment to add specific parallel solutions to other 
ANN models inside the CANN framework such as the BackPropagation or SOM. 

Complimentary tests were also performed on a 4 processor-machine and the CNM 
performed appropriately, allocating the 4 processors during learning and testing processes. 
Those tests were performed only to validate the implementation so that its results are not 
reported here. The machine was not available to perform long time performance tests in 
order to evaluate different CNM behavior with different domain configuration and large 
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learning and testing files. In the future, it would be interesting to execute more complete tests 
when the parallel solution could be tested with different CNM configurations and the 
learning and testing load could be improved to more complicated application domains with 
bigger learning and testing sets.   
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5  I m p l e m e n t i n g  d i s t r i b u t i o n  i n  t h e  C A N N  f r a m e w o r k   

The main goal of having a distributed simulation environment for neural networks is to 
be able to use the networked computational capacity, which means to use the memory and 
processing capacity of the networked computers. The implementation was motivated by the 
possibility of optimizing the time spent to perform ANN learning and testing by using the 
networked capacity. Even being the possibilities of distributing code a very promising 
alternative to improve ANN simulation results, there is no similar work focusing on 
implementing distributed solutions for ANNs. Though the results presented along this 
chapter can be considered contributions to the state of the art in the software development 
of ANNs.  

The simulation of ANN can be a very memory intensive and CPU intensive process. 
Each created ANN structure can allocate significant amounts of memory and its processing 
can take CPU hours or even days. Those are the two main reasons to distribute ANN 
instances. By sending different ANN instances to different machines, the computational 
capability is multiplied. Therefore, different ANN instances with different configurations can 
be built and tested in parallel. From an end user point of view, the CANN simulation 
environment should allow one user to distribute several ANN instances yet controlling them 
locally. 

The implementation of the ANN distribution was built in the CANN framework as a 
facility for distributing any ANN model implemented in CANN framework. The CANN 
ANN instances were built as Java objects with mobility capabilities, being able to run in a 
remote machine.  

5.1 Implementing distribution in the CANN simulation environment 

This section describes the design and implementation of a software solution for 
implementing distributed simulation for Artificial Neural Networks (ANN). The CANN 
framework offers a group of classes that implement various ANN models allowing the 
simultaneous management of any number of instances of those ANN components. These 
ANNs being trained or tested at the same time in the simulation environment should be 
distributed over networked computing devices. In this section the architectural aspects that 
are relevant for understanding the implementation of the ANN distribution are explained in 
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detail. Once again the software implementation has its distribution solution based on the 
Objectspace's Voyager library (http://www.objectspace.com).  

5.1.1 Choosing the mobile component 

One way of distributing ANN computation is to run different ANN models on 
different machines. The main implementation idea is to move only the core ANN objects in 
order to have them running on remote machines, allocating the remote machine CPU and 
memory. The objects that implement the ANN control shall be kept running locally. Class 
NetManager together with the interface INetImplementation (see Chapter 3), form the core entity 
for distributing different ANNs over a network by implementing such a separation of 
controller and implementation.  

The NetManager objects remain in the local program. Each NetManager instance is 
independent of the other ones. The user may work with many NetManager instances at the 
same time in the simulation environment. Each instance of the NetManager has an 
independent GUI so that the user is able to control each ANN simulation independently.  

The objects that implement the INetImplementation interface are appropriate for 
distribution because each one is independent, has no GUI, and is the only one responsible 
for creating, keeping and executing the core ANN functionality. The INetImplementation 
instances can be created either locally or remotely. In both cases, the instance can be moved 
later. 

5.1.2 The ANN instance as a Voyager Agent 

The clear separation of functionality provided by the object model helps to have a 
natural and straightforward implementation of the distribution. This can be seen in detail 
below, where the use of the Voyager distribution framework is explained. 

Voyager implements a forward mechanism to deal with the agent�s distribution. When a 
remote object is constructed using Voyager, a proxy object whose class implements the same 
interface as the remote object is returned to the server machine (from where the remote 
object was created). Voyager dynamically generates the proxy class at run time. The proxy can 
receive and forward messages, receive and return value, and pass the return value on to the 
original sender. The local machine in this case is used as a server computer to send the 
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agents. In this way, the machine where the remote objects are created keeps the proxy of the 
remote objects. 

The forward mechanism is implemented using Java interfaces. A special proxy object 
that implements the same interface as the local object represents the remote object (see 
Figure 5.1). Therefore, a variable whose static type is an interface may either refer to an 
instance of the actual object or a proxy object.   

 

return Value

method call

return Value

method call

Remote MachineLocal Machine

Proxy to
Object

AnObject

Object
AnObject

 

Figure 5.1 - Remote messaging using Proxy  

The proxy solution perfectly fits the CANN architecture. The INetImplementation 
interface can refer to a local object or to a proxy to the remote object, and the NetManager 
implements the object that calls the remote object via the proxy. In such a case it is not 
necessary to change the CANN design. Figure 5.2 shows how the Voyager Proxy is added to 
the CANN framework to make remote references to a ANN component. 

Figure 5.2 is the evolution of Figure 3.9 from Chapter 3 where the CANN architecture 
is explained in detail. The specific ANN implementation classes implement the interface 
INetImplementation that is used to act as the proxy interface for the ANN implementation 
code. It makes then possible for the ANN�s that implements this interface to be moved using 
Voyager.  
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BPImplementation SOMImplementation CNMImplementation

+generateNet() : int
+LearnCase() : void
+TestCase() : Object
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INetImplementation
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+generateNet() : int
+startLearn()
+restartLearn()
+createNetImplementation()
+createFrameNeuralNetwork()
+run()

#domain : Domain
#netImplementation : INetImplementation

NetManager

 

Figure 5.2 - ANN models as classes of INetImplementation. 

It is important to refer here to the design aspects of having a proxy interface 
implementation. Whenever a voyager Proxy is implemented in this distribution framework it 
is implementing the �Proxy� design pattern (Gamma et al, 1995). This pattern makes clear 
that the function of the object that implements it is to act as a forward mechanism.  

Code 5.1 shows the Java source code of the NetManager class for moving objects of 
static type INetImplementation.  

Code 5.1 - The NetManager class 

public abstract class NetManager extends Object implements Serializable, Runnable { 
   INetImplementation netImplementation; // instance of the ANN model 
   transient String URL = NetParameter.localHostURL; // sets to the default local host 
   transient FrameNeuralNetwork frameNeuralNet; // generic ANN GUI 
   Project project; 
 
   //…  
 
   abstract public void createNetImplementation(); 
 
   public void moveNetImplementation() throws Exception { 
       netImplementation = (INetImplementation)Proxy.of(netImplementation); 
       Agent.of(netImplementation).moveTo(getURL(),"atLocation"); 
       netImplementation.setProxies(project.domain); 
   } 
//…  
} 

The NetManager class defines the netImplementation variable that receives an instance of 
any object that implements the INetImplementation interface. The variable netImplementation may 
also contain a proxy object that will refer to the remote instance of the object. 

The code continues with the declaration of a String that stores the URL where the code 
should move. The third variable is the declaration of the NetManager generic GUI 
implemented as a transient variable of the class FrameNeuralNetwork. Transient means that 
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this variable is not made persistent. Finally, a reference to the Project class is maintained by the 
NetManager in order to be able to get access to the domain model and the learning and testing 
data. 

Two methods of NetManager are shown in Code 5.1. The first is the abstract method 
createNetImplementation() that is responsible for creating the ANN instance. This method is 
implemented by the NetManager subclasses. So the variable netImplementation is set by the 
subclasses of NetManager. Those classes are specific managers for each ANN model and 
know how to use the specific ANN model implementation. 

The second method shown is the moveNetImplementation(). This method implements the 
necessary code to move the object contained in the netImplementation variable. In the first 
method line a proxy of the netImplementation variable is created and assigned to it. Then, the 
variable does not refer anymore to the object but to its proxy.  

The next step is to rely on the Voyager dynamic aggregation. It allows the attachment of 
secondary objects, termed facets, to a primary object at runtime. A primary object and its 
facets form an aggregate that is made persistent, moved, and garbage collected as a single 
unit.  

Voyager offers the Agent facet to move objects. This facet is useful when it is necessary 
to give autonomy to the remote object. In such a case the task can be performed 
independently of the launching computer. 

Code 5.1 illustrates the usage of the Agent facet in the second code line of the method 
moveNetImplementation(). Besides adding the Agent facet, the method moveTo(String URL, 
String callback [, Object[] args]) is called. This method, defined in the interface IAgent, is 
responsible for moving the object to the remote program and requests two parameters:  

• The first must be a string containing the URL where to move the object; 

• The second is a string that specifies the callback method to be used to restart 
the code execution at the remote location. 
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5.1.3 Effects of moving the ANN objects 

After running the moveTo method, the ANN object is already located in the remote 
program but is not able to perform properly before reorganizing its references to the local 
program. The method setProxies handles this problem. The last line of the 
moveNetImplementation() calls this method. 

When moving an object in Voyager, the object and all of its non-transient elements are 
copied to the new location using Java serialization. Pass-by-reference interfaces like 
java.rmi.Remote are ignored. In this case, the object and its referenced objects are copied to the 
remote program. To avoid copying excessive and unnecessary objects it is possible to store 
proxies instead of the objects in the variables. 

The ANN instances have references to instances of classes of the CANN project that 
are responsible for data access. Those are the Evidence and Hypothesis classes and its instances 
are controlled by an instance of the Domain class. For each ANN model, different references 
to Evidence and Hypothesis objects must be kept in order to have the appropriate access to the 
learning and testing data (Figure 5.3). Typically, the input and output neurons of the ANN 
have direct references to the evidences and hypothesis that map the problem. With such 
information an ANN instance can automatically get the appropriate learning and testing data 
whenever necessary. The references to these objects are also stored either as direct reference 
to the object or as a proxy in the case of having the instance in a remote program. Therefore, 
the remote ANN implementations are able to refer to the local Domain objects.  
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Figure 5.3 - Associating the ANN to the Domain class 

If the ANN instance is created locally, then the object references are directly set to the 
variables, but if the instance is created remotely, proxies to the local objects are set to the 
variables (dashed arrows in Figure 5.3). The method setProxies() does this job. Each ANN 
model must implement this method in order to keep the correct proxies references when the 
ANN object is moved (the appropriate references from the Neuron instances to the Evidences 
and Hypothesis instances). 

One project may have many Domain definitions. Each ANN instance must have its 
own Domain definition in order to make the parallelization more straightforward. It is an extra 
complication to handle different ANN instances referring to the same Evidence or Hypothesis 
instance and, in consequence, to the same data. Having different Domain definitions avoids 
the problem of synchronizing the access of one evidence or hypothesis by multiple ANN 
instances. Also the access to the learning and testing data is handled by each Domain instance 
independently. If different ANN instances have to use the same Domain definition, one 
Domain instance is cloned to each necessary ANN instance.  

Substituting the variables by proxies when the object is in a remote program can be a 
problem when the user wants to save the project. Saving the project means saving all the 
domain definitions and all ANN instances. When saving an ANN instance located in a 
remote program, the persistence engine saves the referred proxies instead of the instances. To 
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avoid this, it is necessary to move all the proxies to their original location before completing 
the saving operation. Part of the code that implements this is shown in Code 5.2.  

The class Proxy offers the method getLocal() that returns a direct reference to the object 
if it is located in the same program. To have all the remote ANN instances in the same 
program, it is necessary to move them back to the local program before using the getLocal() 
method. It is possible to check whether an instance is local or not through the method 
isLocal() of the class Proxy.  

When saving a project, it is necessary to move all ANN instances to the local program 
and then to restore the ANN internal domain references. After this, the ANN instances can 
be saved (serialized). After saving the project, the instances are returned back to the remote 
program and the proxies are rebuilt. 

For each ANN instance the method saveRemote() is called. This method first returns the 
ANN instance to the local program by calling the method moveNetImplementationHome(). This 
method simply calls the moveNetImplementation() with the local URL as parameter. The local 
URL can be obtained from the Agent method getHome(). 

After returning the ANN instance to the local program, it is possible to restore its 
original object. To implement the restoring of the internal proxies of an ANN instance all 
classes based on the INetImplementation interface must also implement a method called 
restoreObjectsReferences(). This method uses the methods isLocal() and getLocal() from class Proxy 
to move the ANN instance. Furthermore, this method calls the method restoreObjectsReferences() 
of the ANN instance which restores all internal proxies that an ANN instance has to the 
domain classes. This is the inverse effect of the setProxies() method. 
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Code 5.2 - The NetManager class (continued) 

   // …  
   public boolean saveRemote() { 
      // code to get the remote code back and save it 
      try { 
         moveNetImplementationHome(); 
         if (restoreObjectsReferences()) { 
            System.out.println("NetImplementation object restored"); 
            return true; 
         } 
         else { 
            System.out.println("NetImplementation object not restored"); 
            return false; 
         } 
      } catch (Exception ee) { 
         frameNeuralNet.statusBar.setText(ee.toString()); 
         System.err.println(ee); 
         return false; 
      } 
   } 
   public void moveNetImplementationHome() throws Exception { 
       moveNetImplementation(Agent.of(netImplementation).getHome()); 
   } 
   public boolean restoreObjectsReferences() { 
      if (Proxy.of(netImplementation).isLocal()) { 
         if (netImplementation.restoreObjectsReferences()) { 
            // restores the object back to the netImplementation 
           netImplementation =  
             (INetImplementation)Proxy.of(netImplementation).getLocal(); 
           if (netImplementation == null) 
              return false; 
           else 
              return true; 
         } 
         else 
            return false; 
      } 
      else 
         return false; 
   } 

5.2 Testing the CANN distribution solution 

The tests were performed by generating 3 instances of the CNM neural network for the 
credit analysis problem. The credit analysis is a classification problem where customer data 
from a retail company is analyzed in order to classify the customer as potentially good or bad 
for a credit offer. The network is trained with the portfolio data of 22 good customers and 22 
bad customers (44 real cases). The customer data are organized in 32 different evidences 
(data attributes) including evidences such as age, sex and value of the order.  

The Java JDK1.1.7b and the Voyager 2.0.1 version were used as software platform. At 
the moment of the CANN development and performance tests the Hotspot JVM was not 
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available. The use of Hotspot (Java project on a Just in Time Compiler - 
http://www.javasoft.com) could significantly increase the overall performance of the system.  

For testing the ORB, 4 machines connected in a LAN with velocity of 100 Mbits were 
used. The ideal situation would be to use 4 identical machines, but there was no such 
configuration available. Therefore the option was to have two groups of 2 identical machines 
as described in Table 5.1: 

Table 5.1 � Computers used to test the distribution 

Machine name Processor RAM Memory 
Fire PIII - 500 MHz 256 Mb 

Ether PIII - 500 MHz 256 Mb 
Earth K6II – 500 MHz 128 Mb 
Water K6II – 500 MHz 128 Mb 

On the local machine (Fire), the instances of the CNM neural network were generated. 
Each instance works over the same domain model (the credit analysis), uses the same data for 
learning and testing, and the same default learning parameters. Therefore the generated 
networks have exactly the same size in neurons and the same behavior in learning and testing 
the examples. The first neural network is created on the local machine and its learning and 
testing are performed on the local machine as well. Another 3 neural networks were created 
at the local machine and each was moved to a different remote machine. The neural network 
structure (network generation) and the learning and testing were performed on the same 
remote machines. By doing this distribution, it is possible to verify the behavior of the 
CANN simulation tool, the implemented ANN framework and the Voyager ORB.  

5.2.1 Measured results and discussion 

One important measurement is to compare the time the same ANN spends to do the 
learning locally and remotely. The learning time measurements are expressed in minutes in 
the column �Learn� of Table 5.3. The time spent to perform the ANN test is also an 
important measurement once a previously trained network can be distributed to perform 
tasks on remote machines. How the ANNs perform in such a situation is useful in various 
applications from credit analysis to network traffic control. In such applications, the learned 
neural network is moved to the target machine where the measurement shall be done. It can 
perform the whole evaluation on the remote machine and simply inform the results both to 
the local and remote machines. The time results of the local and remote measurements of the 
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ANN�s for testing are shown in column �Test� of Table 5.3. Both the learning and testing 
processes are performed for 44 cases. So the measurements are the total time the CNM 
network spend to learn 44 cases or to test 44 cases.  

In the process of learning, it is always important to consider the network generation, 
that is a pre-condition to the learning. The time spent to perform the learning is also an 
important measurement because this time may be critical, depending on the domain 
application. In Table 5.3 the time spent to generate the networks locally and remotely is 
shown in the column �Generation�. 

Besides the time the ANN spends to perform the tasks remotely, it is important to 
consider the time the system spends to transfer the network from the local machine to the 
remote machine. It is necessary to consider if the neural network was already generated or 
not to account this time. This aspect is important because, before generating the ANN, no 
objects to represent the neural network architecture were created. After learning, the neural 
network structure was already generated and perhaps pruned, remaining only the learned 
ANN structure. In Table 5.3 the label �Transferring pre� shows the time spent by the CNM 
network for credit analysis to be transferred before the network generation and learning was 
performed. The label �Transferring pos� shows the time spent by the CNM network for 
credit analysis to be transferred after the network generation and learning was performed. 

Table 5.2 � Number of CNM neurons after learning 

Neurons Layer Number 
Input 32 

Combinatory 679 
Output 2 

The CNM for credit analysis, after the generation and learning, has a total of 713 
neurons (objects) remaining from the learning process, which means, those are the neurons 
that form the learned network. Table 5.2 shows the exact number of neurons on each CNM 
layer that remain after the credit analysis learning process. Besides those objects, the CNM 
network creates synapse objects to connect neurons from different layers. This is the network 
that contains the knowledge able to solve the credit analysis problem. Such a network can be 
transferred to different remote machines to perform credit analysis directly on these 
machines. 



University of Constance 

Computer & Information Science 

 

 

Software Research Laboratory 
A Component Architecture for 
Artificial Neural Networks 
Fábio Ghignatti Beckenkamp 
June 2002 
Page 180 

 

5.2.2 Performance Results 

The performance evaluation involves tests for evaluating the time the ANN takes for 
running in the local and remote machines. Besides this, it is measured the usage of the CPU�s 
and memory in the local and remote machines. 

5.2.2.1 Time measurements 

The results of the distribution tests can be seen in Table 5.3. The time the network 
spends to generate its structure for learning is much smaller in the local machine than in the 
remote ones. In the same way the time spent to do the learning is much smaller in the local 
machine than in the remote ones. Note that the local machine (Fire) and the remote machine 
number 1 (Ether) have the same hardware configuration. So the performance differences 
from running on the local machine and the remote machine 1 are independent of hardware 
capabilities. The difference in performance between the remote machine 1 and the remote 
machines 2 (Earth) and 3 (Water) can be delegated due to the difference among its hardware 
capabilities.  

Table 5.3 � Time tests 

CNM Credit Generation Learn Test Transferring 

pre 

Transferring 

pos 

Local 0.01 min 00.31 min 0.02 min 0.00 min 0.00 min 

Remote 1 2.41 min 33.59 min 2.40 min 0.02 min 0.02 min 

Remote 2 5.20 min 59.52 min 4.50 min 0.03 min 0.07 min 

Remote 3 3.51 min 49.38 min 3.30 min 0.02 min 0.05 min 
 
• Local machine = Fire 

• Remote machines = Ether (1), Earth (2) and Water (3) 

The time spent by the ORB to perform the neural network moving from one machine 
to another (�Transferring� columns), was considered to be normal and tolerable, interfering 
minimally on the overall performance. Even the time difference in transferring the ANN 
before and after the generation and learning phases haven�t represented much overhead for 
the system performance. Therefore the transferring time is not subject of further time 
measurements and evaluation. 

The performance of the remote neural networks for network generation, learning and 
testing is significantly below the expected values. The time difference between performing 
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the learning locally and remotely is significant. It is necessary to understand why such 
performance degradation occurred. Was it caused by the distributed implementation at the 
application level or a problem generated by the overhead of using an ORB? Why did the first 
experiment have good performance and the second one not? The first attitude was to 
reanalyze the whole CANN distribution architecture and to perform complementary tests to 
try to get clues about the performance bottlenecks, which is detailed in Section 5.5.5 below. 

5.2.2.2 Measuring CPU usage  

The behavior of the CPU usage during the generation and learning processes was 
analyzed. The generation process has different behavior when the local and remote machines 
have different hardware. Table 5.4 shows the ANN generation when two similar machines 
are used. The CPU of the remote hardware is used more intensively, as expected. When the 
remote machine has a hardware inferior in performance than the local hardware, the CPU 
usage reaches 50% for both machines as can be seen in Tables 5.5 and 5.6. For the learning 
process (Table 5.7), the CPU usage on the local machine goes a little bit higher than the 
generation usage on Table 5.4 and the remote machine takes most of its CPU time for 
processing, which is the expected result. This performance was similar for all remote 
machines.  

Table 5.4 � CPU usage for generation on similar hardware machines 

Generation CPU 
Local 20 
Remote 1 80 

 

Table 5.5 � CPU usage for generation on different hardware machines 

Generation CPU 
Local 50 
Remote 2 50 

 

Table 5.6 � CPU usage for generation on different hardware machines 

Generation CPU 
Local 50 
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Remote 3 50 

 

Table 5.7 � CPU usage for learning 

Learning CPU 
Local 40 
Remote 1,2,3 80 

 

Table 5.8 � CPU usage for learning with local hardware inferior than the remote 

Learning CPU 
Local “Water” 70 
Remote “Fire” 50 

 

Interesting was the result shown on Table 5.8. In this case, the chosen local hardware 
was the machine Water and for remote hardware the machine Fire. In this test case the local 
machine has inferior hardware than the remote machine. In this testing scenario, the CPU 
usage was much different than in the case shown in Table 5.7 where the local and remote 
machines where the opposite. While performing the learning process on the remote machine, 
the local machine kept a very high CPU usage and the remote machine did not increase much 
its processing even though the learning process was performed on its memory space. This 
behavior was not expected. It shows again that there is much communication/processing 
performed by the ORB among the local and remote machines. Being the local machine much 
inferior in processing capacity than the remote one, the result is that the remote finishes its 
process in advance and has to wait for the synchronized results of the local one.  

Another CPU measurement performed was to evaluate what happens when another 
process (other running applications) takes the CPU on the local machine. The effect is that 
the Java ORB process slows down and the remote machine also diminishes its processing to 
something like 3%.  



University of Constance 

Computer & Information Science 

 

 

Software Research Laboratory 
A Component Architecture for 
Artificial Neural Networks 
Fábio Ghignatti Beckenkamp 
June 2002 
Page 183 

 

5.2.2.3 Memory measurements 

The memory usage depends on the ANN model and the domain problem being solved. 
The memory can be precisely measured but the results cannot be generalized to any ANN 
model or domain problem. While testing the system the memory of all machines were 
monitored and no special demand was detected. Memory measurements for the CNM Model 
are presented in Chapter 6 where the CNM performance of the CANN system is evaluated. 
One type of memory test performed that gives important information is to verify the 
difference in allocated memory when generating the ANN network in the local machine and 
when generating it in a remote machine. To evaluate this, two tests were performed: 

• Test 1: the CNM for credit analysis was generated on the local machine and its 
memory was measured before and after the network generation. After this, the 
system was restarted and a new CNM network instance was created and moved 
to a remote machine before the network generation. In this second case the 
remote machine memory should be used. The memory of the local machine 
was again measured before and after the network generation on the remote 
machine. The results of Test 1 can be seen in Table 5.9. 

• Test 2, the same test done before was again performed but now with 3 
instances of the CNM network at the same time. The 3 instances were 
generated on the local machine and its memory was measured before and after 
the ANN generation. Later, the CANN simulation environment was restarted 
and another 3 CNM networks where locally created, but in this case, they 
where moved to three different remote machines before generating network 
architectures. The memory of the local machine was measured twice: The first 
measure was after creating the networks, but before moving them to the 
remote location and generating the network architecture; The second 
measurement was done after generating the ANN structures in the remote 
machines. The results of this test are shown in Table 5.10. 

The first test shows that less memory was allocated on the local machine when the 
CNM neural network was generated on the remote machine. When the network was 
remotely generated, the local machine allocated most of the memory (about 1 MBytes) during 
the process of transferring the CNM neural network instance to the remote machine. This 
indicates that the ORB allocated good part of that memory to be used on the handling of the 
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distribution. Not much memory was allocated on the local machine during the process of 
allocating the memory on the remote machine. The remote machine allocated 4616 MBytes 
of memory when the remote CNM network was generated. 

Table 5.9 � Test 1 � Generating one CNM instance 

CNM Credit Local Machine 
Before 

Local Machine 
After 

Local generation 72148 75392 
Remote generation 72140 73580 

The second test shows similar results as Test 1. When distributing the neural networks, 
the necessary memory to be allocated on the local machine is significantly less than the 
necessary to run the ANN´s locally. Running the 3 CNM instances locally, 9336 Mbytes of 
RAM are necessary to generate the 3 CNM neural structures, while running the 3 instances 
remotely, the necessary local memory was only 3476 Mbytes. Of this amount, 1404 Mbytes 
are allocated when transferring the CNM instances to the local machine, that is, memory 
allocated by the ORB to manage the remote instances. The average of memory allocated on 
each of the remote machines was 4799 Mbytes. 

Table 5.10 � Test 2 � Generating 3 CNM instances 

CNM Credit Local Machine 
Before 

Local Machine 
After 

Local generation 73168 82504 
Remote generation 73116 76592 

Those tests show that it is useful to distribute the ANN generation and learning 
processes in terms of the memory footprint. When the limitation for generation of an ANN 
is memory, it is feasible to use the ORB to distribute the ANN structure. The ORB does not 
demand much memory footprint on the local machine and the memory the ANN allocates 
on the remote machine is freed on the local machine. 

5.2.2.4 Measuring communication time 

The performance results taken so far do not encourage the use of the distributed 
solution. It is necessary to clearly understand where is the performance bottleneck of the 
implemented solution is located. The first attitude before performing new tests was to 
upgrade the JDK and Voyager versions assuming that new releases improve performance. 
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The whole solution was migrated to the up-to-date Voyager ORB version (in that case 
the 3.3 version), which demands the whole software migration to the Java JDK1.3 (using Java 
HotSpot Client Virtual Machine (build 1.3.0-C, mixed mode)). By simply doing this, the 
learning time of the ANN was about 33% better for the remote machine 1 (Ether) as can be 
seen in Table 5.11. The learning on the local machine had the same performance. 

Table 5.11 � Learning time for JDK1.3 and Voyager 3.3 

CNM Credit Learn 

Local 00.31 min 

Remote 1 23.06 min 

One important aspect to evaluate is the distribution behavior of other ANN models 
implemented in the CANN environment. Tests were performed then using the 
Backpropagation solution and the ART1 solution. Both implementations are quite 
straightforward based on the same assumptions done to implement the CNM solution. The 
usage of an implementation interface to be used as a proxy to the ANN instance was 
reproduced for the two models.  

Table 5.12 shows the performance average for the two models running on local and 
remote machines. The results for both models are not satisfactory either. The 
Backpropagation model performed about 50 times slower than on the local machine and the 
ART less than 2 times slower. The learning characteristics of both models are quite different, 
the first applies the learning cases many times while the second only once.  

The results show that the performance bottleneck quite likely happens on the 
communication among the local and remote machines for feeding learning examples. So it is 
important to evaluate, especially in the CNM model, how the communication has been 
implemented in order to find out a possible performance bottleneck. 
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Table 5.12 � Learning performance for BP and ART1 

  Learn 

Local 471 BP 
Remote 1 24886 

Local 1752 ART1 
Remote 1 2623 

Another attempt to understand the performance bottleneck is to re-evaluate the 
differences between the first experiment with the Kohonen agent and the CANN distribution 
solution. There is one main architectural difference: the first migrates the whole application 
and does not have to fetch for learning information on the local machine.  

Having this in mind, the next step is to isolate the data access by avoiding fetching 
learning cases in a distributed way. It means that the source code of the ANN is modified in 
order to fetch cases in its own program, not calling remotely to get the necessary data to 
learn. The modification is done on the level of the ANN neurons. Instead of fetching the 
data from the proxy relations to the Domain on the local machine (see Figure 5.3), the data 
are generated at the place the ANN is running. The proxy relations are still built, but the data 
are not fetch through them. The data are directly fetched to the input neurons at the 
particular node being a fast process.  

With this modification the learning time is reduced more than 50%. The result is 
shown on Table 5.13. 

Table 5.13 � Learning time fetching the learning data locally 

CNM Credit Learn 

Local 00.34 min 

Remote 1 09.13 min 

The next modification is not to build the proxy relations to the Domain on the local 
program so that neither the data were fetched remotely nor the remote relations were kept. 
With this modification the learning time dropped down drastically. Table 5.14 shows the 
execution of the CNM learning process at the local and remote machines. One important 
aspect of this modification is that while running the learning on the remote machine, its CPU 
reached 100 percent of usage while the local machine was stable with nearly no usage. The 
communication between the two machines is nearly zero and the whole process has no 
dependence to the local machine as happened before. This proves that it is not only 
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important to avoid fetching the data via the ORB but also not to build many proxy structures 
that can cause overhead to the ORB to manage.  

Table 5.14 � Learning time with no proxies to the local program 

CNM Credit Learn 

Local 00.34 min 

Remote 1 02.16 min 

The results show that the ORB communication is the biggest problem of the solution 
implemented. It is necessary to limit the communication between the local and remote 
machines to the absolutely necessary information. The learning and test data shall be available 
on the remote machine in order to avoid communication to fetch learning and test data. One 
possible solution to this problem is to use an internal database offered by the Voyager ORB. 
The database can be migrated to the remote machine together with the agent. Another 
solution may be to fetch data in bigger chunks, which means, to transfer more cases at once 
and then do the learning or testing locally. 

Two other experiments are executed still having no proxy references to test the 
performance when 2 ANN�s are learned at the same time. Table 5.15 shows the results when 
the first ANN is kept learning at the local machine and the second ANN is sent to the 
remote machine to perform the learning. The results are similar to the ones when the ANN�s 
are learned separately. 

Table 5.15 � Learning time with 2 ANN�s at the same time, one at the local machine and the other at 
the remote machine 

CNM Credit Learn 

Local 00.34 min 

Remote 1 02.22 min 

The second experiment shows the learning of 2 ANN�s at the same time at the remote 
machine (Table 5.16). This experiment is important to evaluate the solution when more 
ANN�s are in the remote machine and have to perform any task. It evaluates the influence of 
the ORB in such situation. The result is that both learning processes are done twice slower 
than before. As the two ANN�s are sharing CPU, it is absolutely normal that the performance 
dropped to the half. There is no evidence that the ORB has an extra influence when more 
than one ANN is learning at the same time in a remote machine. 
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Table 5.16 � Learning time with 2 ANN�s at the same time at the remote machine 

CNM Credit Learn 

Remote 1 (1st ANN) 05.10 min 

Remote 1 (2nd ANN) 05.10 min 

With the elimination of the ORB communication for fetching data, the only remaining 
ORB communication is the ANN learning management. The class CNMManager that always 
runs on the local machine still keeps track of the learning process, commanding the fetching 
of the learning data and the start of the learning process. It commands the remote ANN to 
start the process of learning for each learning case and takes care of getting back its results. 
This communication represents most of the remaining time difference between running the 
ANN locally and remotely. It could be minimized if the coordination of the learning process 
also migrates with the ANN or if it were already installed on the remote machine being able 
to simply plug in different ANN�s and coordinate the processing on the particular machine.  

5.3 Testing the Voyager communication mechanism 

The goal of this section is to analyze in detail the Voyager communication 
implementation in order to verify if there are external aspects that could be influencing the 
ANN performance results of the sections before. By analyzing this, it is possible to conclude 
how communication is influencing on the overall distribution performance. So a small Java 
application is defined in order to have a well-controlled communication application. 

The implemented Java application tests the communication performance among 
remote objects. This test simulates the communication of the CANN framework where input 
neuron objects call a method in a remote object in order to fetch its input data. These data 
are typically a primitive Java data type such as a double value. 

In this experiment, an agent object (consumer) is created and has a reference to an 
object (producer) that provides it with randomly generated double numbers. The agent is 
moved to a remote program and the number generator object keeps running on the local 
program. The agent creates an array of double values and populates it by calling a method of 
the number generator object. The method returns one double number so that it has to be 
called as many times as necessary for populating the complete array. The algorithm is 
explained below:  
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- A program is started on machine 1 
- The program creates two objects: 
 - A random generator (producer) that runs on the machine 1  
 - An agent (consumer) that is moved to the machine 2 
- When the agent is requested to run (doCommunication) it requests from 
the random generator a double number. So that there is a communication 
among the objects located in different machines.  
 - The random object method getNumber simply returns a randomly 
generated double value 
 - The agent request as many double values as the size of a pre-
defined array. 

The consumer object is a Voyager agent that runs on the remote machine 2. Its method 
doCommunication(int) (see Code 5.3), is called when the communication between the agent and 
the producer object called RandomGenerator shall happen. The producer object is located on 
machine 1 and when called executes the method getNumber() that can be seen on Code 5.4. 

Code 5.3 - The agent doCommunication method 

public void doCommunication(int arraySize) { 
 theDataArray = new double[arraySize]; 
 for (int i=0; i<theDataArray.length; i++)  { 
  theDataArray[i] = rGenerator.getNumber(); 
 } 
} 

 Code 5.4 - The RandomGenerator object getNumber  method 

public double getNumber() { 
 return Math.random();   
} 

5.3.1 Measuring the TCP traffic 

The TCP/IP network traffic is measured on the net where this communication test 
program and the performance experiments were performed. The Windump tool was used to 
check for TCP traffic. 

The subnet where the machines are located is not isolated but the tests are always 
performed in time frames when there is not much competing traffic. At the moment of the 
tests there is no significant number of other applications packages. For a total of 10000 
numbers exchanged between the remote and local machines, about 20000 application 
packages are created. Only about 100 are other packages not related to the application. So 
there are no external packages that could influence the overall experiment performance. 

The communication packages generated by Voyager are collected and analyzed. They 
are TCP/IP packages + level 2 header of 77 bytes (FastEthernet standard has minimal 
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packages of 64 bytes). This package has 23 bytes of data. The application send packages with 
only one Java double value = 8 bytes. As the packages are very small in size, the Voyager is 
not adding data overhead to the overall packages. 

From this measurement it is possible to conclude that the Voyager communication 
engine and the network infrastructure do not represent an overhead at the level of TCP/IP 
communication.  

5.3.2 Performance results 

The communication experiment runs in two different ways. In the first, there are two 
Voyager servers running on the same machine. In that case, the producer and the consumer 
objects are located on the same machine though running on different Voyager servers and 
Java virtual machines. In the second, two machines are used where two instances of the 
Voyager ORB server are running. The producer and consumer objects both run on a 
different machine.  

For each experiment the number of communication steps (number of time the 
consumer calls the producer in order to get the generated double number), are incremented 
from 10000 to 50000. For each size, three runs are performed and the average is shown in 
Figure 5.4 for running on the same machine and in Figure 5.5 when running on the separate 
machines. 

Table 5.17 below shows the number of steps of communication, the average results in 
milliseconds that the program take to perform all the communication steps for the local and 
the remote experiment, and the number of times the remote running is slower that the local.  

Table 5.17 � Performance of the communication experiment 

Communication Steps Remote Average (ms) Local Average (ms) Times slower 

10000 4373 13 328 

20000 8281 30 276 

30000 12458 33 374 

40000 16251 44 372 

50000 20189 50 404 
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Figure 5.4 � Performance running locally 
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Figure 5.5 � Performance running remotely 

The test is performed using two Pentium III - 500 MHz machines.  The used network 
has a velocity of 100 Mbps. It shows that the ORB communication can be, on average, 350 
times slower when performing remotely than locally. This proves that it is necessary to avoid 
as much as possible the communication among the distributed objects. Data that are 
necessary for the remote object execution shall be provided to this object using other 
mechanisms such as migrating the data together with the agent or accessing them in a 
distributed way by special distributed databases, etc. 
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5.4 Re-implementing the CNM framework 

Summarizing, the identified problem with the CNM architecture so far is that it has an 
ORB intensive communication from the input neurons on the remote machine to the CANN 
simulation environment on the local machine to fetch the data for learning or testing. While 
learning, for each CNM combination, its associated input neurons have to fetch data on the 
local machine. As the combinations are done over the same input neurons, the same input 
neuron is unnecessarily fetching many times the same data on the local machine for different 
combinations it belongs to. The goal is then to effectively make the software architectural 
changes to minimize this communication, to find a way to have the input neurons populated 
only once for each learning case. Two solutions are considered: 

5.4.1 A timestamp control for fetching the learning data 

Each new learning case represents a new timestamp. For each timestamp each input 
neuron has to fetch data only once. If it is requested to run, it checks the timestamp. It has to 
fetch data on the local machine only if it is one step before the timestamp of the learning 
case. If it is on the same timestamp it simply uses the data already fetched to run and generate 
its output. The performance using the timestamp is shown in Table 5.18 and is the same as 
the one from Table 5.13 where the learning is done fetching the data locally. This is the 
expected result, the ORB references to the local machine are kept but adequately used, and 
the data is fetched in the necessary frequency.  

The difficulty of implementing the timestamp solution is to adequately keep and 
disseminate the timestamp information along the framework. To implement the timestamp, 
the input neuron compute method is extended to evaluate the timestamp before performing its 
computation. The manager class has the control of the learning timestamp while the input 
neurons know their own timestamp. By comparing its timestamp with the learning timestamp 
the input neuron knows if it has to fetch data or not.  

The problem is that on the CNM architecture there is no direct communication 
between the input neurons and the CNMManager class. The CNMManager knows only the 
hypothesis neurons, which have communication to the combinatorial neurons through the 
upper synapses and so on. The learning time stamp would have to be passed as parameter 
along the ANN to the input neurons or to be kept as a class variable at the manager class in 
order to be accessed by any class of the framework. The first solution is elegant, but changes 
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the interface of the framework methods such as compute.  It is not clear whether this change 
would be useful for the other ANN models. The second solution is implemented to evaluate 
the performance of the timestamp solution, but it is not adequate because it compromises the 
parallelism engine once the class variable can only keep the information for the timestamp of 
one CNM network at a time. So the main disadvantage of the timestamp solution is that for 
an adequate solution it changes the CANN architecture. Perhaps the necessary changes could 
be incorporated to the overall framework to cope with such concurrent situations as the 
fetching of input data, but its necessity is not evident at this moment for other ANN models. 

Table 5.18 � Learning time using time stamp control 

CNM Credit Learn 

Local 00.31 min 

Remote 1 09.48 min 

5.4.2 Controlling the learning data fetching  

The learning data fetching for the input neurons has to be exclusively controlled by the 
manager class. The framework architecture had to be extended to implement such a solution. 
The idea is to separate the input neuron computation form its data fetching that was both 
performed inside the same method compute. The input neuron compute method that is 
responsible for fetching the data whenever called, lost this responsibility. Another method 
called fetchData data is implemented to make this task. The compute method is the 
responsible only for the computational evaluation of the input value. When the new method 
fetchData is called, it accesses the associated Domain attribute and fetches the data.  

The CNMImplementation class is modified to have a new method called 
fetchDataToInputNeurons responsible for calling all the CNM input neurons whenever they 
must fetch new learning or testing data. When the CNMManager class knows that a new 
learning step must be performed, it calls the appropriate domain attributes to fetch a new 
case and then calls the CNMImplementation new method fetchDataToInputNeurons to fetch 
this data to the input neurons. Only after this, the CNMManager calls the 
CNMImplementation to do the learning of the case. At this moment the input neuron 
compute method is called without fetching data. The input neurons can be called many times 
in a learning step that they will not fetch the data again and again.  

The results of the tests performed using this solution are in Table 5.19. The overall 
performance is better even when the ANN is running locally because it does not lose time 
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accessing the Domain unnecessarily. When running remotely the performance is similar to 
the timestamp solution that was already expected.   

Table 5.19 � Learning time with the change on the input neuron functionality 

CNM Credit Learn 

Local 00.29 min 

Remote 1 09.17 min 

The range of experiments done in this section shows that the main situations that 
generate ORB communication are: 

1. The learning or testing data fetching through the ORB 

2. The control of the learning or testing process trough the ORB. 

Eliminating the first reason, the performance can be considered satisfactory. The ideal 
is to eliminate both, giving to the agent total autonomy regarding its learning process.  

The solution shown above solves the first communication bottleneck. The second one, 
i.e. the maintaining of the proxies references among the remote and local machines, is still an 
issue to be considered. The simple existence of such references decreases the performance 
much more than when they do not exist. Other architectural improvements could be 
considered here to minimize this situation. 

5.5 Future implementation possibilities 

The distributed solution can be improved in many aspects such as the synchronization 
among the remote and local objects, controlling the learning process in a distributed way and 
breaking the ANN structure to run in different machines. Below those possible 
implementations are explained in detail. 

5.5.1 Synchronization aspects 

The solution presented here introduces the possibility of having the trained ANN as 
Agents. The ANN agents are able to move to different machines on the network and act 
independently. It is possible then to create solutions to problems where multiple machines 
shall be verified or controlled at the same time to reach a certain result. Problems like 
monitoring certain distributed processes can be implemented in a straightforward manner. 
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The implementation done so far does not have such a functionality of generating various 
agents from one trained ANN and automatically distribute them to pre-defined machines. In 
the solution so far the user controls each generated ANN and has to manually send them to 
each machine for learning or testing proposes.   

Besides using the Agent facet, it is possible to move objects using Voyager Mobility facet. 
In this case, the object to move must implement the interface IMobility. In most cases the use 
of this facet is enough to implement distributed computation. The Agent facet is useful when 
it is necessary to give autonomy to the remote object. In the case of the ANN simulator this 
facet is used because, in the future, it is planned to have the ANN learning and testing 
performed independently of the local program. The actual solution is not completely 
independent because the remote ANN relies on the local simulation program to provide it 
with the learning and testing cases from the database.  

The existence of proxy references from the remote ANN to the local domain model 
generates two problems:  

• First, the extra work for taking care of the creation and elimination of proxy 
references to the domain model.  

• Second, the extra processing time lost accessing the domain in the local 
program to get the next data to perform the learning or test process.  

To avoid these two problems it would make sense to copy the domain to the remote 
program together with the databases for learning and testing. This solution is feasible once 
the domain objects are small and Voyager offers a special database service that allows small 
databases to move with an object. Such a solution leads to decisions regarding the size of the 
moved database and its content. If the learning or testing database were large, it would be too 
much overhead to move it entirely. A database service would be necessary to communicate 
with the different remote ANN instances sending parts of the database as requested. Such a 
solution is certainly necessary to make the remote ANN instance more independent of the 
local program, being able to run most of its activities in the remote program, and 
consequently improving its efficiency. 
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5.5.2 Controlling the distributed learning process 

The simulator is able to have several independent ANN instances trying to find the 
solution to a specific problem. The user should be able to synchronously stop the learning 
process of all those ANN instances. This could happen whenever the user wants or when 
one ANN instance reaches the problem solution.  Such kind of synchronization has not been 
implemented yet. 

5.5.3 Dividing and distributing one ANN model 

As ANNs are essentially parallel processes, it would make sense to use the same 
distribution capabilities to divide and distribute one ANN model. This implies: 

• Dividing the ANN structure.  

• Controlling the learning in a parallel and distributed way.  

The breaking of the ANN structure depends very much on its inherent architecture. 
Neural networks such as the CNM have a modular architecture being possible to divide its 
ANN structure. However, neural networks such as the Backpropagation are complicated 
regarding breaking their structure, because their neurons are fully connected from one ANN 
layer to the other.  

5.6 Conclusion 

In the experiments running the whole Kohonen application on different machines, it is 
verified that it runs in an acceptable time and velocity. Although the results achieved in this 
research cannot be generalized for every distributed application using the Java language and 
the Voyager environment, they can be useful as guidelines regarding the distributed 
implementations of neural network models under Voyager. The results encourage a more 
detailed implementation of distribution facilities under the CANN framework.  

Adding mobility to the ANN implementations in CANN is a straightforward task 
basically because of the use of the Java language and the object architecture of the CANN 
framework. The Java language has several characteristics that are useful in this 
implementation:  
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• It offers the capability of executing the generated code on any platform, which 
together with the use of Voyager makes the distribution of code possible. 
Furthermore, the facilities the language offers such as dynamic binding and 
polymorphism permitted the implementation of important requirements such 
as adding new ANN models at runtime. For instance, the user is able to 
develop and add ANN models at runtime to create several ANN instances, and 
to try different solutions of the problem at hand. The user is able to execute 
these ANN tasks in a distributed way making use of the computer network 
infrastructure. Those aspects are considered as very important and, in many 
cases, compensate possible performance losses of using the Java language.  

• Java implement concurrent programming. Skillicorn and Talia (1998) evaluate 
languages for concurrent computation. They argue that it shall be easy to 
program, it should have a software development methodology, it should be 
architecture-independent, it should be easy to understand, it should guarantee 
performance and it should provide accurate information about the cost of 
programs. Java covers quite well at least the first four items. Regarding 
performance, Java is clearly not reaching the point. It is necessary to consider 
the performance losses of the language when running the CANN framework. 
The experience is that the possibility of using multiple machines to test 
different ANN implementations and CPU�s supported by the parallel CNM 
implementation may also compensate this drawback. 

• Java has explicit programming for concurrent implementation (Skillicorn and 
Talia (1998)). That means the software developers shall take care with all details 
of the concurrent implementation. It can be difficult to achieve the best 
possible correctness and performance when programming with such a 
language. To compensate this, the Voyager library offers a brokering system in 
Java. It allows the implementation of mobile objects in a clear and simple way 
without much coding effort and without influencing the application objects 
implementations. 

The software architecture of the CANN facilitates the implementation of mobile 
components. This architecture is carefully designed to allow flexible ANN implementations. 
The clear definition and separation of the objects that form the architecture, help to choose 
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where and how to implement the distribution without changing the implementation done so 
far.  

The presented solution for distribution of ANN objects opens several application 
possibilities. It is possible to develop applications where it is necessary to migrate the ANN 
code to perform artificial intelligent tasks on remote machines such as classification, 
forecasting and clustering. Imagine having an ANN in each computer where customer 
classification shall be accomplished in real-time. A previously trained ANN could be sent to 
each machine whenever necessary and be autonomously evaluating the input data. Other 
tasks in different application areas such as computer networks management could also be 
implemented like: making intelligent routing of messages or intelligent control of the network 
resources. 

However, the performance results of the CANN distribution solution do not 
encourage its usage in a production environment. The time for performing the ANN learning 
and testing on the remote machines were significantly worse than the time spent when 
running on the local machine, which makes the distribution environment inefficient and 
inapplicable at this stage. 

Additional tests should be conducted to verify the behavior of distributed applications 
when using some other technology. An evaluation of the achieved results in this experiment 
also depends on the application in question, which could be considered appropriate for one 
application but unreliable for another application. Furthermore, this experiment is concerned 
with providing an idea about the time, memory and computer resources someone could 
expect to use when building a system in a similar environment, and not to make a judgment 
about the appropriateness of time, memory or processing capacity. Such a judgment is 
beyond the scope of this experiment and is relative to each particular application. 

Some parallel systems permit the load balancing among the participating CPUs (for 
example Cray systems). This is certainly an important feature to be implemented by the ORB 
when being used to implement CPU critical applications such as distributed ANN learning. 
With such a feature the CPU usage could be better tuned for each hardware involved in the 
processing and better results could be reached.  

Another point to discuss is the number of agents running simultaneously on the same 
machine. Tests with more than two agents running simultaneously on the same machine were 
not performed because the scope of this work is to investigate the performance of the 
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distributed application among several computers, and not to investigate the performance of 
the computers when running several applications simultaneously. 

Additional topics that could be considered in future work include: 

• Implementation of different distribution solutions for each of the considered 
ANN models. 

• Adding knowledge representation and communication features to the object 
agents using for example knowledge communication languages, such as DAML 
(The DARPA Agent Markup Language - www.daml.org). Agent 
implementation and communication is not explored here, even though the 
mobile ANN components are implemented as mobile agents. 

• Experiment with other distributed Java development environments such as 
Aglets (Aglets SDK, IBM 2000) or Sumatra (The Sumatra Project, Arizona 
University). 
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6  O p t i m i z a t i o n s  o f  t h e  C o m b i n a t o r i a l  N e u r a l  M o d e l  

The CNM model is explained in detail in Chapter 2. Along this work, complementary 
information about its implementation on the CANN framework is provided. The 
implementation of the CANN CNM component core construction principles is explained in 
Chapter 3 and a parallel solution is presented in Chapter 4.  Besides implementing parallelism 
specific to the CNM model, this work dedicated to introduce and implement significant 
optimizations for its algorithm. This chapter presents the optimizations and empiric results of 
its application. The most important optimization aims at taming combinatorial explosion, 
which is the main problem inherent to this model. 

6.1 CNM Optimizations 

The main limitation of CNM is the possibility of combinatorial explosion, since the 
intermediate layer grows exponentially. The combinatorial explosion problem is critical 
because of memory and processing restrictions that computers have. It is not possible to 
previously generate all domain problem hypotheses (represented by CNM combinatorial 
neurons) and subsequently evaluate which one must remain or not. Because of this 
restriction, until now the CNM model is applied to few areas with a maximum combination 
order of 3. Some effort has been made trying to avoid these restrictions by using genetic 
algorithms to increase the maximum combination order (Denis and Machado, 1991; 
Machado and Rocha, 1992). The next section shows the contribution of this work to this 
problem.  

6.1.1 Separation of Evidences by Hypotheses 

The CNM model is essentially based on the knowledge graphs defined by Leão and 
Rocha (1990). During the knowledge graphs construction, the domain expert defines which 
evidences and findings have to be considered. He/she can also determine which 
evidences/findings relate to each problem hypothesis. This means that for some hypotheses, 
a smaller number of evidences/findings can be considered. As the CNM neural network 
structure generation is independent for each defined hypothesis, some of them can have its 
combinatorial explosion reduced. This happens in reality, for example, in a credit analysis 
problem: The expert determined that the evidence sex is important for evaluating bad 
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customers but not for evaluating good ones. So, considering a distinct set of relevant findings 
for each hypothesis may significantly reduce the search space. 

 

Input Neurons 

Output Neurons 

M
Sex 

F Teen 
Age 

Adult Senior ... 

Good Bad 

... ... 

 

Figure 6.1 � Separation of evidences by hypothesis 

Figure 6.1 shows how this example would affect the generation of the combinations of 
the CNM network. At the time the CNM is generated, the evidence Sex is not considered by 
the hypothesis Good; but the evidence Age is considered and all its findings (Teen, Adult and 
Senior), are considered in the combinations generation. For the hypothesis Bad the evidence 
Sex is considered so that combinations are generated with its findings (Male and Female). It 
may also happen that only one finding of an evidence shall be considered for a given 
hypothesis. This is the case of the finding Adult for the hypothesis Bad in Figure 6.1. The 
other findings of the evidence Age are not considered for generating combinations for the 
hypothesis Bad. 

6.1.2 Avoiding nonsense combinations 

There are some combinations that do not correspond to reality. We call it here nonsense 
combination and the CNM algorithm shall avoid its generation. For instance, it does not 
make sense to generate combinations of findings of the same evidence. For example, for the 
evidence Sex (Figure 6.2), nonsense combinations are those where more than one sex is 
considered.  A person can�t have two sexes so such a combination shouldn�t be considered. It 
is clear and logical, but the original CNM does not consider this kind of situation. This is 
done probably with the hope of simplifying the implementation algorithm but resulted in 
compromising the overall system�s efficiency.  
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Figure 6.2 � Avoiding nonsense combinations 

Even if the evidence is modeled as fuzzy, the combination of two of its findings (fuzzy 
sets) can�t happen. The fact that the evidence is modeled of the fuzzy type warrants that 
more combinations including its findings will be kept after the pruning phase of the learning 
algorithm because more than one finding may be considered for a given evidence value. This 
behavior is not affected by the fact that combinations containing two findings of the same 
fuzzy evidence are not created before hand. 

6.1.3 Optimization on the combination order definition and generation 

Another approach in order to avoid creating unnecessary combinations is to take a look 
at what the others do in order to minimize the threat of the combinatorial explosion. So a 
property on which many association rule discovery algorithms (Agrawal et al. 1993) are based 
to cope with this problem is considered: Taking a set of selection criteria, the number of 
examples which pass such criteria cannot exceed the number of examples selected by any 
subset of this selection criteria. For example, if patients were selected from a database with 
the criteria: AGE > 30 AND SEX=�FEMALE�, the number of retrieved patients cannot be 
larger than the number of patients that would be selected by one of those criteria taken 
separately.  

Based on such a property, the association rule discovery algorithm Apriori (Agrawal et 
al. 1996) first analyses individual items (which are equivalent to the concept of findings), so 
that only the ones supported by the examples used in training are combined generating 2-
itemsets (combinations of 2 findings). From the 2-itemset combinations, only the ones, which 
are supported by the examples, are expanded generating 3-itemset combinations, and so on. 
With this as inspiration, the CNM algorithm for the topology generation has been optimized, 
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resulting in a major search space reduction, especially for complex applications with a very 
large number of findings and where high order knowledge has to be discovered. The 
improved algorithm is shown in Algorithm 6.1. 

Algorithm 6.1: New algorithm for CNM learning 

Let Hk be a set of domain problem hypotheses; 
Let N be an empty CNM network; 
Let Fk be the set of findings that occur within the set of examples of Hk; 
For each order Od from 2 up to N do 
Begin 
 Let Nkt be an empty temporary CNM network; 
 For each hypothesis Hk do 
  Add combinatorial neurons to Nkt by combining Fk with order Od; 
 Train network Nkt; 
 Prune non-rewarded combinations of network Nkt; 
 Add to N network all remaining combinations from Nkt; 
 For each hypothesis Hk do 

Let Fk be the set of findings that appear on rewarded combinations 
Nkt; 

End; 
Prune the N remaining networks by the original CNM algorithm readjusting the 
weights; 
 

In the first iteration of the main �for� loop, the findings that occur associated to each 
hypothesis will be considered to generate order-2 combinations. These combinations are 
stored in a temporary network, which is trained and pruned. By pruning, all combinations 
that are not validated by the examples will be deleted from the network. This pruning is a 
simplified version so that only the combinations that are never rewarded during learning  
(reward accumulator is zero) are pruned and the weights are not changed. After this pruning, 
the remaining combinations are transferred to the network.  

As some parts of the network have been pruned, it is expected that some findings that 
does not occur in any combination that has been rewarded (which did not occur in the set of 
examples), will not be relevant in the next algorithm iteration. Since the complexity of 
combinatorial layer generation is exponential, even a small reduction of the number of 
findings to be combined has a significant impact on the size of the search space.  

After doing the learning loop from the order 2 to the desired order, a final pruning 
process is applied over the remaining network. This pruning is the original CNM pruning 
algorithm, where combinations that received more punishments than rewards are pruned and 
the weights are modified. 

The main advantage of this algorithm is the reduction of memory and time resources 
for the learning process without compromising accuracy, as no relevant findings are pruned. 
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Furthermore, it is possible to generate nets with higher orders than with the original (non-
optimized) algorithm. This can be seen in the next section that discusses the performance of 
the non-optimized and optimized CNM algorithms. 

The optimizations are applied using the original CNM reward, punishing and pruning 
calculations. If those calculi are changed, it is necessary to reevaluate the applicability of the 
optimization. Furthermore, other methods for optimizing the combination generation are not 
considered in this work and may be subject of  further research and comparison to the 
presented optimizations. 

6.2 Test Results 

The domain for this test is that of credit analysis. Real customer data, provided by a 
company, have been used describing information about customers and what they bought. 
The task is to classify the customers as either �good� or �bad� ones. The company domain 
expert (credit analyst) defines the relevant evidences and findings. A set of 13 evidences are 
identified, e.g. age, sex, order value, type of customer, etc. From these 13 evidences, 32 
findings are defined based on finding types such as fuzzy (e.g. age = teen, adolescent, adult, 
senior), numerical (e.g. type of customer = 1,2 or 3) or string (e.g. sex = M or F).  

To better evaluate the improvements of the optimized algorithm, 3 tests were 
performed using 3 CNM networks with the following characteristics:  

1. A CNM network generated using the normal CNM algorithm [9, 10] that is 
called here non-optimized network (Table 6.1). This network contained all 
combinations for the specified 32 findings from order 2 to order 4.  

2. A CNM network generated without the non-sense combinations but still using 
the non-optimized algorithm (Table 6.2). This test is important for verifying the 
size of the remaining network without the non-sense combinations. 

3. A CNM network generated by the optimized algorithm (Table 6.3). The 
findings are separated by hypotheses, non-sense combinations are eliminated, 
and the learning is done step by step by eliminating non-relevant findings based 
on Algorithm 6.1. 
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The Tables 6.1, 6.2 and 6.3 show the results of the 3 proposed tests. The table�s 
structure is as follows: 

• The column �Comb. order� shows the combination order that the 
CNM network must generate for learning. In case of Tables 6.1 and 6.2, 
the CNM simultaneously generates all combinations from order 2 to the 
order specified in this column. In case of Table 6.3, the CNM generates 
combinations step by step for each combination order from 2 to 4 
based on Algorithm 6.1. 

• The column �Hypotheses� shows the two hypotheses considered in the 
testing problem domain: �good� and �bad�. The division into good or 
bad is important for the evaluation of other columns that separately 
show the number of combinations for each hypothesis. 

• The column �Number of generated combinations for order N� shows 
the number of generated combinations for each order N. 

• The �Remaining rewarded combinations� column indicates the 
combinations that were not pruned because they received reward 
during the learning process (simplified pruning of Algorithm 6.1). 

• The �Final number of combinations� column shows combinations 
which remain after performing the original CNM pruning (the last 
pruning of Algorithm 6.1).  

• The �Findings number� is the number of findings considered for the 
combination order N. In these tests, the networks start considering all 
the 32 findings for each hypothesis. 

• The column �Time� shows the time taken by the learning algorithm to 
generate the network and to perform the learning and pruning 
processes. A set of 44 cases are used (22 good and 22 bad) for the 
learning. The time is given in milliseconds and minutes. 

• The column �Memo� shows the amount of memory (in Mbytes) used 
for doing the learning, i.e. the amount of memory used for allocating 
the CNM network. 
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• The column �Result� shows the number of correct responses for each 
hypothesis after testing another data set with 44 cases (22 good and 22 
bad).  

Table 6.1 - Non-optimized network for order 4 

Number of generated 

combinations for 

order 

Time Comb. 

Order 
Hypotheses 

2 3 4 

Remaining 

rewarded 

combinations 

Final number 

of 

combinations 

Findings 

number 

µs Min 

Memo Result 

4 Good 496 4960 35960 7785 3306 32 495891 8:15 40936 15 

 Bad 496 4960 35960 7636 3172 32    16 

The columns �Remaining rewarded combinations� and �Final number of 
combinations� should have the same values for the three algorithm versions. The first test 
(Table 6.1) has different values due to remaining combinations among findings of the same 
fuzzy evidence. Those combinations should be eliminated since two different values of one 
evidence are forbidden. However, this sometimes occurs with fuzzy evidences because two 
different fuzzy values can be presented to the network at the same time in a single case (e.g. 
an age 45 can be considered 0.5 adult and 0.5 senior). Thus, there will inevitably be some 
non-sense combinations remaining at the end of the learning process. This difference is not 
encountered in the test types two and three because their nonsense combinations are not 
generated. It is important to realize that these remaining nonsense combinations are not 
strong enough to be activated, and do not influence the correct performance of the network. 

Table 6.2 - Non-optimized network for order 4 � only eliminating non-sense combinations 

Number of generated 

combinations for 

order 

Time Comb. 

Order 
Hypotheses 

2 3 4 

Remaining 

rewarded 

combinations 

Final number 

of 

combinations 

Findings 

number 

µs Min 

Memo Result 

4 Good 470 4196 25409 6968 2900 32 321328 5:21 28220 15 

 Bad 470 4196 25409 6864 2809 32    16 

The analysis of the findings, which are eliminated during the optimized learning, is 
equally important. In test type 3 (Table 6.3), after the learning and pruning of order 2, it is 
verified that some findings are eliminated, reducing to 28 findings for the �Good� hypothesis 
and to 26 findings for the �Bad� hypothesis. The next learning order only generates 
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combinations for those remaining findings, greatly reducing the overall size of the generated 
network. In this problem domain, the number of findings does not reduce for the orders 
larger than 2. 

Table 6.3 - Optimized network for order 4 

Number of generated 

combinations for 

order 

Time Comb. 

Order 
Hypotheses 

2 3 4 

Remaining 

rewarded 

combinations 

Final number 

of 

combinations 

Findings 

number 

µs Min 

Memo Result 

2 Good 470 - - 297 - 32 3938 0:03 1180 - 

 Bad 470 - - 271 - 32    - 

3 Good - 2768 - 1587 - 28 31750 0:31 3204 - 

 Bad - 2244 - 1514 - 26    - 

4 Good - - 14441 5084 2900 28 118281 1:58 17760 15 

 Bad - - 11001 5079 2809 26    16 

The time consumed for the learning process shows a significant difference between the 
test type 1 and the test type 3 (non-optimized to the optimized). The optimized network 
spent 68.95% less time than the non-optimized network.  

The tests also show the economic use of memory through the optimized learning 
algorithm. The optimized network (Table 6.3) use only 43.38% of the memory compared to 
the non-optimized (Table 6.1). Because of such memory savings during the learning, it is 
possible to generate the neural network up to order 5 using the optimization algorithm. It is 
not possible to generate the order 5 for the non-optimized algorithm because there is not 
enough memory to support all the combinations generated at the same time. 

It is possible to verify this economy in memory during the CNM learning. With the 
non-optimized algorithm, the combinations (for all orders) are generated and maintained in 
memory simultaneously. For Tables 6.1 and 6.2 it is necessary to add the orders 2, 3 and 4 of 
the column “Number of generated combinations for order” for both “good” and “bad” 
hypotheses. For the optimized algorithm (Table 6.3), it is only necessary to add the 
“Remaining rewarded combinations” of previous orders, and the column “Number of 
generated combinations for order” for the order in learning process. Considering learning 
order 4, for the non-optimized network (Table 6.1), the total number of combinations is 
82832 while for the optimized network (Table 6.3) it is 29111, which means a 64.86% 
reduction. It is important to remember that the number of generated combinations depends 
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on the combination order and on the domain model. Thus, it may change very much from 
one application domain to another but the optimizations, in terms of the number of 
generated combinations, will always be relevant. 

6.3 Conclusions 

It is important to reinforce/summarize the optimizations results obtained by the 
algorithm proposed here: 

1. About 1/3 of the time for learning. 

2. About 1/2 of the memory used. 

3. About 1/3 of the combinations generated. 

4. Combination order up to 5. 

5. Same classification quality. 

The optimizations presented have significantly reduced the generation of the 
combinatorial layer of the CNM model. In the approach presented here, relevant findings are 
separated in a subset for each hypothesis (reducing the number of findings to be considered) 
and nonsense combinations are avoided. A major search space reduction has been achieved, 
as the generation of combinations is controlled in order to avoid the pre-generation of all 
possible combinations for a given combination order. A new algorithm with such 
optimizations is proposed, implemented and tested. The adequate software architecture 
makes it possible to consider each detail in the sense of best using the computational 
resources to make the CNM model applicable. Finally, the CANN CNM component 
implements the two algorithms, the original and the optimized. 
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7  A N N  s i m u l a t i o n   

In this chapter the developed CANN simulation environment is explained in detail. Its 
functionality is shown and its strong and weak points are carefully analyzed. To better 
understand these aspects other simulation environments are also analyzed to form a 
background. So the goals of this chapter are twofold: 

• To show the CANN simulator functionality and analyze it. 

• To analyze other simulators and compare them to CANN. 

To better understand what is going to be analyzed it is important to understand what 
kind of ANN simulation tools exist and what characteristic are taken into consideration in 
order to evaluate the simulators. The ANN development and simulation tools can be divided 
into three categories (Kock, 1996): 

• Menu based/graphic oriented systems � Systems that allow the user to 
manipulate the ANN models via a graphic oriented interface. In general, the 
user can instantiate new ANN instances and manipulate them based on 
parameterization. Examples are: SNNS (Zell, 1995); NeuralWorks 
(NeuralWare, 1995); and ECANSE (SIEMENS AG, 1998). 

• Module libraries � Software libraries programmed in a general purpose 
language such as C or Java. In general the ANN networks can be instantiated in 
a user program and appropriately accessed via parameterization. Sometimes the 
libraries offer extension facilities of the core library software. Examples are: 
Xerion (Camp, 1993); SESAME (Goddard et al. 1989); and ABLE (IBM, 2000). 

• Specific programming languages � Systems that offer a specific 
programming language for creating ANN. They may include a library of ANN 
modules already implemented in that language. Examples are: Aspirin 
(Leighton, 1993) and CONNECT (Kock et al. 1994). 

The simulators may belong to more than one category but usually one aspect is 
stronger, justifying its categorization. There are some criteria that can be taken into 
consideration when implementing and evaluating a simulation tool. The importance of one 



University of Constance 

Computer & Information Science 

 

 

Software Research Laboratory 
A Component Architecture for 
Artificial Neural Networks 
Fábio Ghignatti Beckenkamp 
June 2002 
Page 210 

 

criterion may vary from user to user so that it is not important that a simulation tool 
implements all the criteria but properly identifies which ones are important for each 
application situation. Some accepted criteria are: 

• System handling � The user interface should be easy to use and learn. The 
user may find proper information about the ANN abstractions offered by the 
tool and may have tools to understand the results of the performed simulations 
such as graphics, etc. 

• Flexibility � The simulator should support a minimal set of pre-built relevant 
ANN models and it should be easy to play around with those models by 
changing topology, learning rules, etc. The flexibility has much to do with 
software design principles and reuse of the whole simulation software pieces. 

• System integration � The tool should be able to integrate with other systems 
on the pre- and pos-processing of the ANN. For instance to have tools for 
fetching data and for facilitating the use of the learned ANN on other systems. 
The portability of the simulation tool is also an important aspect of integration. 

• Pragmatics � The system scalability is an important aspect to be considered 
because of the nature of the ANN simulation that can quickly enlarge and take 
the environment resources.  

Taking those criteria into consideration, some specific aspects that are relevant to this 
wok when developing and analyzing simulation environments are listed on the Table 7.1.  

When the evaluating simulation tools it is important to consider, from this work point 
of view, the implemented software engineering principles. For instance, it is relevant to verify 
check whether the development is done taking care of OO principles, frameworks concepts, 
design patterns, and components technology.  There are not many ANN simulation tools that 
can clearly be included in this group. In this work two of such tools will be analyzed: 
ECANSE (SIEMENS AG, 1998) and ABLE (IBM, 2000).  
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Table 7.1 � Criteria for analysing ANN Simulators 

System 
handling 

• GUI facilities 
o Data visualization 
o Visual programming 
o GUI framework 
o ANN visualization 

Flexibility • Components  
o Level of abstraction 
o Reusability 
o Deploy facilities 
o Testing facilities 

• Several ANN and domain at the same simulation environment 
• Including ANN components at runtime 

Integration • System and components portability 
• Data  

o Access � ASCII, Database 
o Manipulation/conversion facilities 
o Domain modeling 

Pragmatics • Scalability 
o Distribution facilities 
o Simulation and ANN parallelism 

The three simulation environment characteristics are explained in detail along the rest 
of this chapter. 

7.1 The CANN simulator 

Taking the classifications for the ANN simulation tool introduced above, it is possible 
to classify CANN as a module library because its extensibility is done via software 
programming. As already explained before in Chapter 3, the CANN components implement, 
in general, whitebox frameworks that can be extended either by inheritance or by composition. 
However, it is also possible to consider CANN as a hybrid solution because a basic graphic 
simulation environment was already built. The ANN GUI framework generalizes some 
functionality management for any ANN model and there are also facilities for creating and 
editing domain models and data converters. The simulation environment forms a kernel for 
the simulation of ANN extended from the CANN components. 

The main goals for building the CANN simulation environment in this work are: 
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• To have an environment where to perform ANN simulation using the CANN 
components. 

• To get experience implementing a general GUI for ANN simulation. 

The main characteristics of the CANN simulation environment are: 

• Several ANN can be instantiated and simulated at the same time. 

• Several domain can be modelled and used at the same time by different ANN 
models 

• The ANN simulation can be distributed to the networked computers. 

Anybody who wants to use the CANN only as a simulation environment through the 
already existing ANN components does not need to understand the inner programming 
characteristics of the CANN component frameworks. However, the user who would like to 
extend the CANN functionality does need to understand the inner programming 
characteristics. As CANN is a whitebox framework the whole source code is available to the 
programmer so that he is able to understand the core software details and change it. Along 
this section, the CANN functionality will be analyzed in detail. The CANN components that 
implement core functionalities may be freely cited without adding details. To fully understand 
the software engineering details of those components it is necessary to read Chapter 3. 

7.1.1 The Project 

The CANN simulation environment implements one instance of the CANN Project 
component. The simulator does not allow opening more than one project at the same time. A 
created project may contain any number of CANN Domain component instances and 
CANN ANN components instances. Figure 7.1 shows that the project called twonets.prj is 
already opened and the actions that can be applied to project are shown as well. The user can 
perform the following actions: 

• New - Create a new project. 

• Open - Open a project. 

• Save - Save the opened project 
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• Save As - Save the opened project with a new name. 

• Close - Close the opened project. 

• Exit - Exit the CANN simulator. 

At the bottom of the frame there is a status bar that shows important messages to the 
user, in general, relevant results of his/her actions or errors. 

 

Figure 7.1 � Actions over a CANN project 

The creation of a new project presumes the creation of new domain and ANN 
instances. Next, the creations of those are explained in detail. 

7.1.2 The Domain 

Figure 7.2 shows the possible actions that can be executed over the Domain: 

• Select � The user can create new domain instances and select one to manipulate 
its hypothesis and evidences definition. 

• Evidences � Create and edit domain evidences. 

• Hypotheses - Create and edit domain hypotheses. 

• Data Sources � Actions over the data sources for learning and testing. 
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• Choose - Choose the type of data source, it is an instance of the Fetcher 
CANN component (e.g. ASCIIFetcher). 

• Learn � Choose the data source for learning based on the selected type (e.g. a 
text file). 

• Test � Choose the data source for testing based on the selected type. 

  

Figure 7.2 � The possible actions over the Domain 

 Figure 7.2 shows that the project twonets.prj is open. It shows also between parentheses 
the name of the selected domain, in that case XOR. After creating a new project the user 
must create the domain, which can be done by the Domain-Select menu. Figure 7.3 shows the 
Domain select dialog. Here the user can create a new domain simply by typing the name and 
clicking on the Add button. The created domain is then listed on the top dialog list of domain 
names where, at Figure 7.3, the XOR and Bi-Dimensional domains are listed. The user may also 
select between the two domains by using the Select button, or remove an existing domain 
from the list. 
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Figure 7.3 � Creating or selecting a domain model 

After creating the Domain instance, it is possible to return to the main Domain menu 
and create the hypotheses and evidences of the selected domain.  

7.1.2.1 The data converters 

Before creating any evidence or hypothesis it is necessary to choose the type of data 
converter that will be applied for the given domain. The converters are subclasses of the 
Fetcher class and in the case of Figure 7.4 the ASCIIFetcher and DatabaseFetcher are available. 
The second is not fully implemented. At the moment, the CANN simulation environment 
does only work with ASCII file converters.  

 

Figure 7.4 � Selecting the data converter 

By setting the converter types the user is also automatically selecting the type of two 
implemented converters: the one that will be implemented for fetching the data for the 
domain, that means selecting a case from the case base; the other for the evidences and 
hypothesis, that means selecting the exact data inside the case that belongs to the given 
evidence or hypothesis. In this example, the domain will have associated an instance of the 
ASCIIFetcher component. In the same way, instances of the EvidenceASCIIFetcher will be 
automatically associated to the evidences and hypotheses at the time they are created. While 
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creating these evidences and hypotheses the user will have to set the necessary values for the 
implemented EvidenceASCIIFetcher. 

After the selection of the converter type, it is possible to select the data sources based 
on the converter type. For the ASCII file converter, the dialog of the Figure 7.5 appear to the 
user, where he/she can browse the file resources and select a given ASCII file (Open button). 
In the example of Figure 7.5 the file C:\CANN\XOR_BP.txt is selected. The user can also 
set the number of examples (cases) that must be considered from this file as learning 
examples. He/she may also set whether the examples shall be selected serially from the first 
example or randomly among the given examples inside the file. The dialog for setting the 
testing data file is very similar. 

 

Figure 7.5 � Setting the learn data source 

7.1.2.2 The Evidences 

The evidences defined for the XOR problem can be seen in Figure 7.6. In this dialog, 
the user can Edit, Add or Remove evidences to and from the domain model.  

 

Figure 7.6 - List of Evidences 
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Experts use evidences to analyze the problem in order to come up with decisions. 
Evidences in the case of the XOR problem would be the values that represent the two 
variables analyzed in a XOR clause. In the example, the XOR problem has two input 
variables so that two evidences are created. The modeling of the evidences and hypothesis 
may not be the same for different ANN models. In general, the way the problem domain is 
modeled must consider the ANN model that it will be applied. For instance, modeling the 
XOR problem for the Backpropagation and CNM models are different. Figure 7.7 shows the 
dialog that is used to add or edit evidences. In the example the evidence Input 1 has been 
edited.  

 

Figure 7.7 � Editing one Evidence 

The evidence may have more than one attribute of different types. The Input 1 evidence 
in Figure 7.7 has one attribute called I1 of the Numeric type. The attributes of an evidence are 
responsible for preparing the learning or testing data for an input neuron of the ANN 
component. The attributes implement the necessary data conversion to turn the input data 
into something that the ANN input neuron is able to process. The attributes of the Numeric 
type simply warrant that the value be a numeric (float in that case). The String attribute 
implements a string that is used to compare with the given input data.  If the strings are 
identical it returns the numeric value 1, otherwise it returns the value 0. The Fuzzy attribute 
applies a fuzzy function to the given input and returns the result of the function, a numeric 
value from 0 to 1. Finally, the Range attribute is a specialization of the Numeric attribute that 
returns 1 if the given input value is inside its defined numeric interval, otherwise it returns 0. 
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The button Fetcher on Figure 7.7 is used to configure the evidence converter. Figure 
7.8 shows the implemented dialog for the EvidenceASCIIFetcher.  In this case the user must 
define the columns where to take the date in a given case. The case inside an ASCII file must 
be organized as records. Each case is a record or a line on the file. Each record contains the 
data for all attributes of a given case. The attributes data shall be organized in determined 
positions inside this record. This is the most basic way of organizing an ASCII flat file. It is 
possible to implement other fetchers to implement coma-separated files, or even files based 
on XML definition. 

 

Figure 7.8 � Evidence Fetcher 

In the example of Figure 7.8, it is defined that the evidence Input 1 is located in the 
position from 0 to 0 in the file, which means the first column of the record. The From 
position starts on zero, so the first column of the file must be considered the column zero. 
The To position determines the last column that must be taken (From and To are �inclusive�). 
The attribute value is taken as a string and converted by the modeled evidence attributes 
based on its given type as already explained. 

7.1.2.3 The Hypotheses 

The hypotheses can be created and edited in a similar way as the evidences. There is a 
list of hypotheses that is similar to the list of evidences of the Figure 7.6. The dialog for 
creating/editing a hypothesis can be seen in Figure 7.9 and is very similar to the evidence 
dialog as well. This dialog has the same functionalities as creating the evidence fetcher and 
the evidence attributes. Besides this, there is a list of the related evidence attributes. This list 
was specially created for the CNM optimized model introduced in Chapter 6, but turned out 
to be important for all the CANN components. This list defined which evidence attributes 
shall be considered in the creation of the ANN topology, given a certain hypothesis. Usually 
all the modeled evidence attributes are associated to all hypothesis. In the example, the 
evidence Output is associated to all modeled evidence attributes. Because of this association it 
is necessary to create first the evidences and its attributes and then create the hypotheses. 
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Figure 7.9 � Editing one Hypothesis 

In the example, the XOR problem has only one output so that one hypothesis was 
modeled and called Output. It has only one numeric attribute called Output as well. In the case 
of the Backpropagation ANN component this attribute will be associated to the output 
neuron and during the supervised learning phase it will provide the learning cases results to 
be compared with the ANN calculated output. An attribute is always associated to one ANN 
input/output neuron. The attributes defined for the evidences and hypothesis are used to 
automatically build the ANN topology.  

7.1.3 The ANN simulation 

Figure 7.10 shows the menu alternatives for adding a new ANN component to the 
CANN simulation and for managing the simulations of the ANN instances. 
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Figure 7.10 � Neural Network menu 

7.1.3.1 Adding ANN components at runtime 

The user is able to add at runtime any ANN component through the menu Neural 
Network - Add New Model. Figure 7.11 shows the dialog used for including new ANN 
components. In the example, the components for the Backpropagation and SOM ANN 
models are already included. To include new models the user must simply type the name of 
the component and the simulator will find it on the appropriate CANN path. The ANN 
components are the concrete classes of the NetManager. In the example the CNM component 
name was typed, it is necessary simply to press the button Add to have it plugged to the 
simulator. 

 

Figure 7.11 � Plugging a new ANN component at runtime 
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7.1.3.2 Creating ANN instances 

The creation of an ANN instance based on the added components is done in the dialog 
shown on Figure 7.12. The user gives a name for the ANN instance he/she is creating, for 
instance SOM 2. The ANN component can be selected using the Model combo box. This 
combo shows the models added before on Figure 7.11 dialog. The ANN instance will also 
have an associated domain instance that is selected from the already created domains using 
the Domain combo box.  

 

Figure 7.12 � Creating a new ANN instance 

The variable IP is disabled because it is only informative. It means that the ANN 
instance is created and run on the IP of the local host at port 7000, that is, the address where 
the Voyager server is running. The ANN instance starts running on the Voyager default IP 
and port and can move to another host under the user�s choice. This aspect is explained 
further in Section 7.2.3.3. 

The dialog of Figure 7.12 is called when pressing the button Add on the Simulating 
ANN�s dialog of Figure 7.13.  

7.1.3.3 Simulating the ANN instances 

Figure 7.13 shows, on its upper list, three ANN instances. The first two (BP 1 and 
SOM 1) were previously created and were persisted within the project twonets.prj. A third 
ANN instance was created when creating the Figure 7.12 example. The Status list below 
reports the user�s actions and occasional errors. The printed message of the example is 
reporting that the SOM 2 instance was successfully created. 



University of Constance 

Computer & Information Science 

 

 

Software Research Laboratory 
A Component Architecture for 
Artificial Neural Networks 
Fábio Ghignatti Beckenkamp 
June 2002 
Page 222 

 

 

Figure 7.13 � Managing the ANN simulation 

In Figure 7.13, the buttons Open and Close are used to open or close the ANN instance 
simulation GUI that is shown on Figure 7.14.  

 

Figure 7.14 � ANN simulation frame 

For simulating an ANN a GUI framework is created, which is formed by a set of 
generic Java classes based on Frame and Dialog classes that are used by any ANN instance. 
The details of this implementation are already explained in Chapter 3. In the case of Figure 
7.14 it is running the Backpropagation instance called BP 1. The menu Neural Net offers the 
possibilities to configure the inner ANN component, reset - meaning creating a new network 
structure with new weights, save the neural network instance and close the frame.  
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Figure 7.15 shows the dialog where the user can choose the appropriate learning 
parameters for the Backpropagation ANN instance. As already explained before, this dialog 
must be implemented for each different ANN model (see Chapter 3). 

 

Figure 7.15 �Backpropagation configuration 

The menu Simulate shown in Figure 7.16 offers the alternatives to execute the ANN 
moving, learning and testing (called here Consult). The Help menu is not implemented yet. At 
the bottom of the dialog there is a status bar to print information and errors to the users. 

 

Figure 7.16 � The Simulate menu  

Figure 7.17 shows the dialog called by the Move menu. In this dialog the user can 
specify a host IP and port where to move the ANN instance, making use of the mobility 
characteristic of the ANN components. The mobility is explained in detail in Chapter 5. 
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Figure 7.17 � Moving the ANN component to run in a remote machine 

Figure 7.18 shows the learning dialog. In this example the Backpropagation network is 
generated for the given XOR domain problem in 20 milliseconds. The learning was 
performed for the XOR problem as well, and succeeded at 144 epochs taking 1182 
milliseconds. In this dialog the user can generate new nets, start, stop and restart the learning. 
The learning is performed based on an ASCII file that was already defined by the 
implemented Fetcher at the ANN associated Domain instance.  

 

Figure 7.18 � Backpropagation learning the XOR problem 

Figure 7.19 shows the dialog for testing a case base. It is showing a case base formed by 
the XOR problem being tested by the Backpropagation learned ANN. The test is performed 
based on an ASCII file that was already defined by the implemented Fetcher at the Domain 
instance. The cases show the input values for I1 and I2 (Input 1 and Input 2 evidences and I1 
and I2 attributes of these evidences), having 0 for false and 1 for true. The ANN output 
result is a numeric value between 0 (false) and 1 (true). The Figure shows the network 



University of Constance 

Computer & Information Science 

 

 

Software Research Laboratory 
A Component Architecture for 
Artificial Neural Networks 
Fábio Ghignatti Beckenkamp 
June 2002 
Page 225 

 

performing properly for the first three cases. In this dialog it is possible to start, stop, restart 
and reset the testing of the case base.  

Figure 7.20 shows the testing tool/dialog where the user has the chance of building at 
runtime a case to be presented for the ANN. In the case, the user did not select the Input 1 
meaning that this input evidence must have value zero (false) as activation. The selected 
Input 2 will have activation 1 (true). The evaluation of this case to the XOR learned 
Backpropagation network gave the output result of 0.866, that is, a value next to value one, 
meaning (true).  

CANN does not have a dedicated component for graphical data visualization. 
However, it is possible to integrate visualization graphics. It enables the user to better 
understand the ANN data input or produced output, or even the ANN weight structure, as 
can be seen in the Figure 7.21, where it is possible to see the SOM weights when learning the 
bi-dimensional domain problem. 

 

Figure 7.19 � Backpropagation testing the XOR problem 
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Figure 7.20 - Performing the testing of a user case 

The CANN functionality and implementation aspects shown so far provide an 
overview of what this simulation tool is capable. The system is not complete in the sense of 
GUI facilities but already incorporates some important aspects, such as the ANN GUI 
framework that makes the simulation operation unified for any ANN model. Data and ANN 
visualization facilities appear in very simple forms and or are built programmatically.  

The strongest part of the CANN framework is its flexibility. The component 
frameworks are tied together on the tool in a way that the programmer can easily create new 
ANN models and include them to the environment. The component framework offers 
different levels of reusability and strong deploy and portability capabilities, due to its standard 
implementation as JavaBeans. The simulation environment is able to manage several problem 
domains running different ANN models. It is also possible to include new ANN components 
at runtime. There is an easy way of accessing learning and testing data via specific user 
configured components. The data can also be converted by the ready-made converter 
components or by extended converter components. There is no database access component 
implemented. The simulation environment scales well, it is able to run ANN�s that allocate 
huge amounts of memory or CPU processing. Thanks to the Java portability, memory 
management and threads implementation, the system is able to properly allocate the machine 
resources in order to support big ANN structure and long learning simulations. 
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Figure 7.21 � SOM learning graphics (6 snapshots) 

  

The CANN simulation environment is not a finished system, having much to evolve. 
However, its core characteristics presented here show that it already supports some of the 
most desirable characteristics for ANN simulation. Next, two other simulation tools are 
analyzed in order to compare with the CANN and give hints on what can be done in its 
future developments. Table 7.2 resumes the CANN simulator characteristics. 
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Table 7.2 � Resuming CANN characteristics 

Characteristic CANN 
Data visualization ! 

Visual programming  
GUI framework ! 

High level of abstraction ! 
Reusability ! 

Deploy facilities ! 
Testing facilities  

Several ANN and domain ! 
ANN components at runtime ! 

System and components portability ! 
Data Access � ASCII, Database ! 

Manipulation/conversion facilities ! 
Domain knowledge modeling ! 

Distribution facilities ! 
Simulation and ANN parallelism ! 

7.2 Analysis of ANN simulators 

There are some well-known ANN simulation environments available academically and 
commercially (see Section 7.1). The intention here is not to be extensive in analyzing as many 
tools as possible, but to pick from these well-known ones some that are up-to-date and that 
implement software engineering characteristics that make them similar/competitive to the 
CANN principles and ideas. In that way, it is important to understand in which aspects they 
differ, when one or the other makes better or worse implementation choices, and what 
CANN can learn from those tools. The first analyzed tool is the ECANSE (Environment for 
Computer Aided Neural Software Engineering), which is developed by SIEMENS and is 
commercially available. The second is the ABLE (Agent Building & Learning Environment), 
a research project at IBM.  

7.2.1 ECANSE (Environment for Computer Aided Neural Software 
Engineering) 

The ECANSE demo version 2.02.2 is analyzed. It is a visual development, simulation 
and testing tool where the user can create mathematical simulations including fuzzy sets, 
ANN and genetic algorithms. The ready-made ANN models are SOM, Backpropagation, 
Hopfield and RBF (Radial Basis Functions).  

The ECANSE objects are represented visually on the simulation environment as can 
be seen in Figure 7.22. A component has input and output blocks that permit the connection 
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among them using the connector objects. Data flowing among objects can be two types: the 
C basic data types or pre-defined derived vector types. A configuration is a combination of 
the objects in a data flow as exemplified in Figure 7.22. The data flowing through the 
connectors can suffer the necessary transformations to be properly treated by the next object 
on the flow. 

 

Figure 7.22 - ECANSE visual simulation environment 

Each object can be parameterized when created. For example, the learning parameters 
can be set while instantiating an ANN component. There are parameters that may change in 
runtime. The overall functionality is based on time discretization. Each element on a 
configuration has its time control (time step). Learning and testing phases can be defined and 
separate data for each phase can be defined as well. 

ECANSE was developed in C++, taking care of OO concepts and reusability. The 
programmer�s version allows to extend the system. Batch programming is available to 
automate already finished work, which means, to make simulations as a batch job. The 
system is available for Windows and Unix machines. 

ECANSE is based on a system kernel that provides object-oriented mechanisms to 
derive classes from the kernel classes. It has two main classes from which the others shall 
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derive: the AnyObject and the EcanseObject. The AnyObject implement the ECANSE 
mechanisms that are required for simulation (so called static mechanisms), such as load, save, 
copy, paste, parameterization and visualization. The EcanseObject derives from AnyObject and 
takes care of the dynamic mechanisms required for simulation such as the definition of object 
input and output, connecting outputs to inputs and executing an algorithm. 

Those static and dynamic mechanisms of ECANSE are generic, working for all objects 
derived from AnyObject or EcanseObject. Such derived class describes its attributes and 
methods based on those generic descriptions. As a consequence, it easily integrates into the 
ECANSE environment. This mechanism ECANSE implements is similar to the concepts of 
interface and abstract classes on the Java Language that are extensively used to implement the 
generic solution of the CANN Framelets.   

ECANSE implements a complete framework for building the visualization of its 
components. It provides generic means for implementing the visual control of object 
parameters and methods execution. By implementing specific interfaces any object can be 
included and manipulated on the visual simulation environment. 

Derived EcanseObjects have to implement two specific methods that are responsible for 
the object simulation capabilities. Those methods are: algorithm() and reset(). The algorithm() 
methods defines what the object performs during a simulation step, typically the outputs are 
calculated from the inputs, the internal values or state variables and the parameters. The 
EcanseObject implements a synchronization mechanism that warrants the appropriate access to 
the input and output values in a simulation flow. The programmer also has to be aware of 
what variables and parameters he/she can or cannot modify inside the algorithm() method.  

The reset() method resets the EcanseObject internal variables. The user must implement 
this method in order to initialize any user-controlled variable. Besides this, resetting the 
object results in the initialization of the synchronization for data transfer and the setting of 
time counter to zero. 

Neural Networks ECANSE objects also shall implement some methods that are useful 
for controlling its learning and testing phases such as: is_learning(), is_end_epoche(); 
is_begin_epoche(); set_learning() and set_testing(). The programmers manual provides a template 
for adaptive objects where the programmer can easily add its own code for creating ANN 
objects by implementing the methods to override. 
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The ECANSE open API does provide objects at a high level of abstraction, in general 
math functions or complete ANN models. There are no objects that could help with the 
creation of new ANN models. The available components have a black box reusability nature. 
The user/developer can simply use them on the visual programming environment only by 
understanding its public interface, not being necessary to understand the inner code. 

There are no facilities to deploy the ECANSE components in other systems or 
applications. The components were built to run only inside its simulation environment. This 
aspect compromises the applicability of the resulting learned ANN�s very much.  

ECANSE implements objects to perform tasks such as selecting data from a file and 
transforming it to be accessed by the ANN. The manipulation of ASCII file is very rich but 
there are no alternatives for direct access to databases. The problem domain modeling is 
implemented using those data access objects. The data are organized by the data access 
component and the ANN component input is configured in a way to be prepared for 
receiving this modeled data. ECANSE approach for implementing data fetching and domain 
modeling is data centered, being a very simply approach. Nevertheless, it is very complete 
and provides very good reusability. It forms a good example for CANN evolution of its 
equivalent components. 

The ECANSE environment GUI facilities are absolutely satisfactory. Its visual 
programming environment is very easy to use and intuitive. It includes components for 
visualizing data as 2D and 3D graphics, besides enabling the visualization of the ANN inner 
data such as the neurons weights. 

ECANSE offers parallelism at the session level the same way CANN does. In 
ECANSE more than one ANN can run in parallel by creating two configurations, which is how 
a visual program is called inside the simulation environment. The two configurations may 
contain instances of completely independent objects that can run simultaneously.  

There is no information about how the ANN models were implemented, whether they 
have implemented parallelism inside the ANN structure. There are also no ways for running 
the simulations in a distributed way such as the ones implemented in CANN. Another 
concept that is not implemented on the simulation environment is the possibility of including 
new ANN components at runtime. Table 7.3 resumes the ECANSE simulator characteristics. 
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Table 7.3 � Resuming ECANSE characteristics  

Characteristic ECANSE
Data visualization ! 

Visual programming ! 
GUI framework ! 

High level of abstraction ! 
Reusability ! 

Deploy facilities  
Testing facilities  

Several ANN and domain  
ANN components at runtime  

System and components portability ! 
Data Access � ASCII, Database ! 

Manipulation/conversion facilities ! 
Domain knowledge modeling  

Distribution facilities  
Simulation and ANN parallelism ! 

7.2.2 ABLE (Agent Building and Learning Environment) 

ABLE (IBM, 2000) is a research project at the IBM T.J. Watson Research Center 
(http://www.watson.ibm.com/). The evaluated ABLE version is the 1.2a (December 7, 
2000). The main ABLE goal is to build hybrid intelligent agents (AbleAgent) that include both 
reasoning and learning. It provides a framework for constructing components (AbleBeans) 
that implement intelligence coming from specific Artificial Intelligence algorithms including 
ANN. It also includes an IDE (the AbleEditor) for building the agents. The core AbleBeans 
includes beans for reading and writing data from text files, for data transformation and 
scaling. ABLE is developed in Java and its components are standard JavaBeans.  

The AbleAgent is an encapsulated application program that is built using AbleBeans and 
aggregates data, property, and event connections. Therefore, an AbleAgent is said to be a 
container of AbleComponents. There are some predefined ANN components such as 
Backpropagation, SOM and RBF. The ANN components can be plugged to data 
components on the AbleEditor in order to perform simulations. There are specific beans to 
import and export data from/to text files and perform the necessary data transformations to 
apply to the ANN components. AbleAgents can be serialized, so that the user can save them 
using the AbleEditor. 

ABLE is a toolkit for developing and deploying hybrid intelligent agents and agent 
applications. The agents are considered hybrid because they can combine different 
methodologies such as fuzzy sets, ANN�s, genetic algorithms and rule-based systems. 



University of Constance 

Computer & Information Science 

 

 

Software Research Laboratory 
A Component Architecture for 
Artificial Neural Networks 
Fábio Ghignatti Beckenkamp 
June 2002 
Page 233 

 

AbleAgents are said to be autonomous software components because an AbleAgent can run on 
its own thread of control or can be called synchronously by another agent or process either 
through a direct method call or by sending an event. AbleAgents are situated in their 
environment through the use of sensors and effectors, which provide a generic mechanism 
for linking them to Java applications.  

AbleAgents can be accessed remotely using Java RMI. However they have no mobility 
capabilities, so they can�t be distributed at runtime in order to use the machine resources 
available on the network. As part of the ABLE project, there is a plan to build a FIPA-
compliant agent platform in Java.  FIPA, the Foundation for Intelligent Physical Agents 
(http://www.fipa.org), is an international standards body working toward agent 
interoperability. 

The ABLE user can extend the system core classes like text file I/O, data 
transformation, neural networks, and fuzzy and Boolean reasoning. By packaging the 
extended classes as beans in a Java Archive (JAR) file, it can be plugged into the AbleEditor to 
build and debug an application consisting of multiple beans and connections. 

The user is able to extend the framework by extending the AbleObject or 
AbleDefaultAgent base classes. The beans integration is quite flexible having possibilities for 
tight or loose integration. In the first case, using method calls and running on the 
application's thread of control, and in the second case, using event passing and some or all of 
the beans could have their own thread of control. Data can be shared between beans by 
accessing bean properties held in the container agent, or data can be passed between beans 
using the data flow (buffer) connections.  

The major design aspects that developers have to take care of while extending the 
ABLE agents are:  

• Threading � The user shall decide if the bean will have its own threads. 

• Data flow � Deciding if the data will be passed by properties or global data, via 
notification or action events. 

• Processing flow � The agent processing can be controlled by the default wiring 
of data flow or can be hard-coded inside the extended agent.  
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ABLE implements parallelism at the session level. In the implemented architecture, the 
agent component can handle its own thread of control so that the simulation of the ANN is 
independent from the simulation environment control. As the thread control can be 
completely implemented by the extended AbleAgent it is probably possible to implement 
parallelism inside the ANN model architecture as well. However, there are no references in 
the ABLE manuals about already implemented parallelism on the ready-made ANN 
components. 

The ABLE ANN components are defined at the abstraction level of ANN model. 
There are no lower level ANN components to be used as basic building blocks to facilitate 
the construction of other ANN models. Therefore, the reusability at the level of ANN 
structure and algorithm construction is minimal when it is necessary to build a new ANN 
component. ABLE has a very complete tutorial on how to extend its components and good 
quality of components documentation. 

The GUI (AbleEditor � Figure 7.23) offers the opportunity to plug together the 
AbleBeans in order to create AbleAgents for simulation. The editor is not very user friendly as a 
visual programming environment. The gluing of the components is not intuitive because the 
ways to connect the components are not visually explicit; it is necessary to navigate in menus 
to find the connection possibilities. The components have visual inspections that include 
graphics for visualizing the flow of data in different kinds of charts and network graphic 
representation.  

 

Figure 7.23 � Able Editor 
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New components can be added to the AbleEditor at runtime as .jar files including ANN 
components. However, it is not possible to have more than one running simulation (agent) 
simultaneously. The mechanisms for data access and transformation are based on 
components that import or export data from text files and components (filters) that permit 
the domain problem mapping and the transformation of the input data into appropriate 
values for the ANN. Those components have a pretty similar behavior to the correspondent 
CANN components. Table 7.4 resumes the ABLE simulator characteristics. 

Table 7.4 � Resuming ABLE characteristics 

Characteristic ABLE 
Data visualization ! 

Visual programming ! 
GUI framework ! 

High level of abstraction ! 
Reusability ! 

Deploy facilities ! 
Testing facilities  

Several ANN and domain  
ANN components at runtime  

System and components portability ! 
Data Access � ASCII, Database ! 

Manipulation/conversion facilities ! 
Domain knowledge modeling  

Distribution facilities  
Simulation and ANN parallelism ! 

7.3 Conclusion 

By evaluating the two component and simulation environments, it is possible to clearly 
define the unique characteristics of CANN and the characteristics that the analyzed tools 
have also implemented. The Table 7.5 schematically shows the comparison of the CANN 
and the two simulation environments. The other tools were clearly developed taking into 
consideration the object-oriented approach, having design and reusability issues as primary 
goals, like CANN did. It is possible to consider that the main characteristics that CANN 
includes are:  

• The component frameworks for building ANN models and simulation. 

• The domain and ANN integration plus the possibility of running several 
combinations of the two. 
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• The parallelism and distribution facilities.  

In general, when a project is focused on developing a simulation environment 
performance is not the major design goal, but the software engineering aspects. In the 
development of CANN the performance was not neglected because parallelism and 
distribution design aspects were studied and implemented. The construction of the CANN 
simulation tool reflects the existence of the two aspects, for instance it includes facilities such 
as plugging new ANN components at runtime, executing different ANN models at the same 
time and distributing the ANN components to run on the networked computers. 

Table 7.5 � Software characteristics and the analyzed related work 

Characteristic CANN ECANSE ABLE 
Data visualization ! ! ! 

Visual programming  ! ! 
GUI framework ! ! ! 

High level of abstraction ! ! ! 
Reusability ! ! ! 

Deploy facilities !  ! 
Testing facilities    

Several ANN and domain !   
ANN components at runtime !   

System and components portability ! ! ! 
Data Access � ASCII, Database ! ! ! 

Manipulation/conversion facilities ! ! ! 
Domain knowledge modeling !   

Distribution facilities !   
Simulation and ANN parallelism ! ! ! 

The two analyzed tools have implemented characteristics that are not implemented or 
considered in the CANN such as: 

• Visual programming environment � A plug and play environment where the 
ANN models and the simulations can be developed by visually plugging the 
available components together. 

• Data visualization � Components for visualizing data as text or graphics such as 
the ANN input and output values, weight values, error signals, etc. 

As a result, the future research and developments related to the CANN simulation 
environment could be concentrated on improving the CANN best capabilities and what is 
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still missing or appears to be very useful by the evaluation of the other two tools. The two 
main areas would be: 

• Evolving the ANN components to be as complete as possible on its extension 
and integration capabilities specially by polishing the ANN and simulation 
frameworks. This effort should be complemented by the creation of a visual 
programming environment where those components should be plugged 
together at runtime as it was already done by ECANSE and ABLE.  

• Evolving the distribution capabilities towards building an intelligent agents 
simulation environment where concurrent and distributed agent applications 
could be developed. The intelligent agents can include not only ANN based 
agents but also agents whose inner intelligence can be implemented by other 
algorithms. 

Furthermore, there are some implementation issues that could be added to help with 
some important activities improving CANN functionality. The use of XML files could 
happen in many parts of the system such as: 

• XML based knowledge description of the domain model (Olson and Kent, 
1997) � The domain could be created either via the GUI interface or a XML 
file that have a textual description of the problem domain at hand. The 
simulator should be able to import or export domain models from and to such 
an XML file. This could make the construction of the domain knowledge very 
intuitive. Persisting the domain as an XML file allows for easy communication 
of the represented knowledge, facilitating its reuse by any intelligent system. 

• XML based learning and testing data � Text files is the most used form of 
fetching data to the ANN simulators. However, the organization of those data, 
positionally or using any separator, is very poor because the data can�t be easily 
interpreted by the user or the system, and is very error prone because any 
missing information or wrong position can lead to completely wrong results. 
The use of an XML organization for these data can help with its handling for 
the computer systems and for the humans. 

• XML files for deploying the ANN � The ANN learned structure (ANN model, 
number of layers, neurons, learning parameters, weight values, etc), could be 
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also persisted in XML files. This would permit to rebuild the ANN model in 
any ANN simulation environment simply by correctly interpreting the ANN 
information persisted on the XML file. The CANN should be able to import 
and export such ANN representation.  

• XML for deploying the ANN results � The results of the ANN simulation 
sometimes have to be analyzed by other systems, organized in reports, graphics, 
etc. The data evaluated by the ANN, especially when testing from a case base, 
could be persisted in an XML file in order to be easily imported to other 
systems or programs. 

• XML script programming for batch running � The batch learning may be very 
useful when it is necessary to make simulations during nonworking time or in 
background (example of XML based scripting is the ANT (), a scripting 
language for Java).  

There are some additional aspects that could also be implemented by demand: 

• Web interface for the simulator - The simulator can run associated to a web 
server and be accessed via web. The distributed simulations could be 
coordinated via this interface too.  

• Component to monitor one ANN instance working - Useful when an ANN 
component is deployed as a standalone component in a separate system or 
application. This component could be connected to it in order to allow its 
monitoring independent of the system flow.  

CANN has brought some important engineering aspects to the simulation of ANN. 
Many other aspects can still be explored. The frameworks implemented so far and the applied 
technologies show the proper path for continuing the CANN evolution. 
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8  C o n c l u s i o n s  a n d  F u t u r e  W o r k  

This chapter summarizes the work. Complementarily, it exposes the author�s vision 
about the possible future work. 

8.1 Conclusions 

This work has shown that the application of framework technology leads to the 
construction of ANN software with appropriate flexibility. The implementation of the 
CANN framework based on an object-oriented design of neural network components 
delivered the expected software benefits. The CANN components have been used for 
different purposes in different systems as expected.  

As already explained in Chapter 1, the CNM ANN component was applied to perform 
credit rating in a retail company. The optimized CNM component was the base for the 
implementation of a commercial data-mining toll, the AIRA (http://www.godigital.com.br) 
that has been largely applied in the area of personalization of web sites. The CANN 
simulation environment has been applied to weather forecast.  In the work described in (da 
Rosa et. Al, 2001a and 2001b), it is applied to rare event weather forecasting at airport 
terminals. The CANN simulation environment also has been used as a simulation tool for 
implementing a VMI solution (Vendor Managed Inventory) for an E-Business company 
(http://www.mercador.com). 

The framework design has given flexibility and reliability to those cited systems and 
applications. The CANN framework components goals expanded from a classificatory 
system with only one learning algorithm to the possibility of implementing many different 
learning algorithms. The design permits the straightforward application of the different ANN 
models to different ANN domain problems. Different data sources are easily coupled to the 
domain problem at hand and applied to the ANN learning and testing processes. The design 
also allowed the framework to add other implementation facilities such as parallelization and 
distribution.  

Implementing parallelism requires complete control over the ANN software 
architecture in order to reproduce specific parallel software structures and control 
mechanisms. The CANN framework offered the proper structures and mechanisms to 
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implement a generic solution to simulate ANN in parallel. The first implementation of 
parallelism at the level of each synapses (Weight parallelism) proved to be too fine-grained, 
leading to performance problems. The second solution implementing parallelism at the level 
of Training session parallelism was appropriate for the given architecture. In such parallelism, 
different ANN instances run in parallel sharing the CPU resources without degrading its 
performance. 

The architecture of each ANN model defines its possible parallel solutions. As the 
architectures differ very much from model to model, it is very difficult to have a generic 
parallel solution. However, the CANN framework facilitates the parallel implementation by 
giving exact entry points for implementing thread control. There is a clear separation of 
ANN architectural parts such as neurons, synapses and management components. Given 
those facilities, it was straightforward to implement a parallel solution for the CNM model. 
This implementation is unique; there are no other parallel implementations for the CNM 
model so far. A positive consequence of having a specific parallel solution for the CNM 
model is that it performs properly, leading to performance improvements. The CNM parallel 
solution can accommodate the usage of the available hardware resources leading to a better 
hardware usage during the learning and testing processes. The tests proved that it is possible 
to create an appropriate number of threads in order to get the best results from the number 
of available CPU�s.  

Adding mobility to the ANN implementations in CANN was quite a straightforward 
task basically because of the use of the Java language and the object architecture of the 
CANN framework. The clear definition and separation of the objects that form the 
architecture helped to choose where and how to implement the distribution without changing 
the implementation done so far.  

Unfortunately, the performance of the CANN distribution solution still is not in an 
adequate level. The time for performing the ANN learning and testing on the remote 
machines are significantly worse than the time spent when running on the local machine. 
Further improvements of the distributed solution shall be done specially concentrated on 
avoiding as much communication between the local and remote components as possible.  

Even with performance limitations, the presented solution for the distribution of ANN 
objects opens several application possibilities. It is possible to develop applications where it is 
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necessary to migrate the ANN code to perform artificial intelligent tasks in remote machines 
such as classification, forecasting and clustering. 

Another important contribution of this work was the proposition and implementation 
of improvements on the CNM algorithm. The optimizations presented have significantly 
reduced the generation of the combinatorial layer of the CNM model. In the approach 
presented here, relevant findings are separated in a subset for each hypothesis, reducing the 
number of findings to be considered, and nonsense combinations are avoided. A major 
search space reduction has been achieved, as the generation of combinations is controlled in 
order to avoid the pre-generation of all possible combinations for a given combination order. 
The adequate software architecture of the CANN framework makes it possible to consider 
each detail in the sense of best using the computational resources to make the CNM model 
applicable.  

Finally, the CANN CNM component implements the two algorithms, the original and 
the optimized. It is important to reinforce/summarize the results obtained by the optimized 
algorithm proposed here when compared with the original one: 

6. About 1/3 of the time for learning. 

7. About 1/2 of the memory used. 

8. About 1/3 of the combinations generated. 

9. Combination order up to 5. 

10. Same classification quality. 

Based on the construction of the CANN framework, a complete ANN simulation 
environment was built. The CANN simulation environment was used to perform the tests of 
each implemented ANN component. It was also used for evaluating the parallelism and 
distribution solutions besides the CNM optimized algorithm. It has also been applied to 
different areas from weather forecasting to web sites personalization. 

In general, when a project is focused on developing a simulation environment, the 
performance is not the major design goal, but the software engineering aspects. In the 
development of CANN it did not happened, the performance was not neglected because 
parallelism and distribution design aspects were studied and implemented. The construction 
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of the CANN simulation tool also includes facilities such as plugging new ANN components 
at runtime, executing different ANN models at the same time and distributing the ANN 
components to run on the networked computers. 

The main characteristics that CANN includes are:  

• The component frameworks for building ANN models and simulation. 

• The domain and ANN integration plus the possibility of running several 
combinations of the two. 

• The parallelism and distribution facilities.  

CANN has brought some important engineering aspects to the simulation of ANN. 
Many other aspects can still be explored. The frameworks implemented so far and the applied 
technologies show the proper path for continuing the CANN evolution. 

As a corollary, based on the above conclusions it is possible to say that this work has 
achieved its goals, which are: 

• Come up with a flexible and efficient design for ANN implementation. 

• Give hints on how to better develop ANN software. 

• Come up with contributions on how to implement ANN parallelism in 
software and code mobility for ANN architectures in order to provide ANN 
execution in a distributed system.  

• Promote contributions to ANN models improvements. 

8.2 Future Work 

The current design and implementation of CANN may be considered as a generic 
decision-making system based on neural networks. An ambitious goal would be to enhance 
the framework further, so that other decision-support problems can be supported. Also 
ambitious would be to allow the implementation of other learning mechanisms that do not 
rely only on neural networks, such as machine learning algorithms. 
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The parallel implementation of CNM is intrinsically implemented in its architecture and 
cannot be extended to other ANN models. It would be an important future implementation 
experiment trying to add specific parallel solutions to other ANN models inside the CANN 
framework such as the BackPropagation or SOM. 

The distribution solution should be improved in order to achieve better performance 
results. Additional topics that could be considered in future work on distribution include: 

• Implement different distribution solutions for each of the considered ANN 
models. 

• Add knowledge representation and communication features to the object 
agents using a knowledge communication language. 

The future research and developments related to the CANN simulation environment 
could be concentrated on improving the CANN best capabilities and what is still missing or 
appears to be very useful by the evaluation of the other two tools. The two main areas would 
be: 

• Evolving the ANN components to be as complete as possible on its extension 
and integration capabilities specially by polishing the ANN and simulation 
frameworks. This effort should be complemented by the creation of a visual 
programming environment where those components should be plugged 
together at runtime such as already done by ECANSE and ABLE.  

• Evolving the distribution capabilities towards of building an intelligent agents 
simulation environment where concurrent and distributed agent applications 
could be developed. The intelligent agents can include not only ANN based 
agents but also agents whose inner intelligence can be implemented by other 
algorithms. 

The CANN simulation environment could also improve by having some user facilities, 
such as: 

• Visual programming environment � A plug and play environment where the 
ANN models and the simulations can be developed by visually plugging the 
available components together. 
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• Data visualization � Components for visualizing data as text or graphics such as 
the ANN input and output values, weight values, error signals, etc. 

Furthermore, there are some implementation issues that could also be added to help 
some important activities improve CANN functionality. The use of XML files could happen 
in many parts of the system such as:  

• The domain description of the problem. 

• The description and persistence of the ANN structure. 

• The persistence of the learning and testing data. 

There are some additional aspects that could also be implemented by demand: 

• Web interface for the simulator.  

• Component to monitor one ANN instance working. 
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