

A COMPONENT ARCHITECTURE
FOR ARTIFICIAL NEURAL

NETWORK SYSTEMS

Fábio Ghignatti Beckenkamp

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr.rer.nat.)

an der Universität Konstanz

eingereicht in der
Mathematisch-Naturwissenschaftlichen Sektion

im Fachbereich Informatik und Informationswissenschaft

Juni 2002

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 2

A c k no w l e d g e m e n t s

I dedicate this work to my parents Valecy and Jalda that have made the education of
their kids their first priority in life.

I express my most profound gratitude to my wife Ana who supported my initiatives
and goals from the beginning of our relationship, though it meant even sometimes being
geographically separated but close enough for love.

Special thanks go to my advisor Prof. Dr. Wolfgang Pree for providing the opportunity
of doing this work, and for his expertise, enthusiasm and friendship that helped in the course
of doing the PhD.

Thanks to my brother Tarcísio and my sister Mariele for being nearby whenever I
needed.

Thanks to Ana�s family for having comprehended the importance of this effort.
This work would not have being possible without the direct support of many people

and institutions for several reasons. My thankfulness goes to the University of Constance, its
professors, colleagues and staff; and to the Federal University of Rio Grande do Sul,
especially to Prof. Dr. Paulo Engel.

Some people filled my life during this time with unconditional friendship and help, this
includes: Sergio Viademonte; Altino Pavan; Egbert Althammer; André Ghignatti and the
Mercador colleagues; Michael Beckenkamp and family; César De Rose; Gustavo Hexsel;
Ênio Frantz; Beatriz Leão; Miguel Feldens; Brazilian friends in Germany and European
friends.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 3

D e u t s c h e Z us a m m e n f a s s u n g

Diese Arbeit stellt zuerst die Architekturbausteine eines Komponentenframeworks dar,
das im Rahmen der Dissertation implementiert wurde und das die Wiederverwendung der
Kernteile von Modellen für künstlichen neuronalen Netze (artificial neural networks, ANN)
erlaubt. Obwohl es eine Reihe von verschiedenen ANN-Modellen gibt, wurde ein
wesentlicher Aspekt bisher kaum untersucht, nämlich der der Bereitstellung von
wiederverwendbaren Komponenten, die eine effiziente Implementierung von entsprechende
Systemarchitekturen für diese Domäne ermöglichen. Das Komponentenframework wird mit
bestehenden Implementierungsansätzen für ANN-Modelle und -Simulationen verglichen.

Die Anwendung von ANN sieht sich mit Schwierigkeiten konfrontiert, wie zum
Beispiel Begrenzungen von Hardwareressourcen und passende Softwarelösungen. Die
Tatsache, wie sich die ANN-Komponenten die Parallelisierung von vernetzten Computern
zunutze machen, stellt einen Beitrag zum Stand der Technik im mobilen Code und in
verteilten Systemen dar. Die Software-Architektur wurde so definiert, dass sie die
Parallelisierung sowohl der internen Ausführung eines ANNs wie auch der Simulation von
unterschiedlichen ANNs, simultan auf derselben Maschine oder auf unterschiedlichen
Maschinen verteilt, erleichtert. Das kombinatorische Netzmodell (combinatorial network
model, CNM) wurde dabei als Fallstudie für die Implementierung von Parallelität auf der
Ebene der ANN-Struktur gewählt.

Die durchgeführte Verbesserung eines der ANN-Modelle, nämlich des CNM, stellt
einen Beitrag zum Bereich der ANNs selbst und zum Data-Mining dar. Der ursprüngliche
CNM-Algorithmus konnte erheblich verbessert werden hinsichtlich der Optimierung des
Suchraumes, mit dem Effekt einer höheren Ausführungsgeschwindigkeit und weniger
Speicherverbrauch.

Das letzte Kapitel bietet einen Überblick über offene Forschungsfragen, die während
der Dissertation aufgetaucht sind.

Schlüsselwörter: Framework, Komponenten, Wiederverwendung von Software,
objektorientiertes Design, objektorientierte Architektur, künstliche neuronale Netze,
intelligente Expertensysteme, hybride intelligente Systeme.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 4

A b s t r a c t

The main focus of the PhD thesis is about automating the implementation of artificial
neural networks (ANNS) models by applying object/ and component technology. Though
various ANN models exist, the aspect of how to provide reusable components in that
domain for efficiently implementing adequate system architectures has been barely
investigated. The prototypical component framework that was designed and implemented in
the realm of the dissertation is compared to existing approaches for generically implementing
ANN models and simulations.

The application of ANNs faces difficulties such as limits of hardware resources and
appropriate software solutions. How the ANN components harness parallelization on
networked computers represents a contribution to the state-of-the-art in mobile code and
distributed systems. The software architecture was defined in a way to facilitate the
automated parallelization at the level of the inner execution of an ANN and at the level of
the simulation of different ANNs at the same time, on one computing node or on different
computing nodes in a distributed way. The Combinatorial Network Model (CNM) was
chosen as case study for implementing parallelism at the level of the ANN structure.

The improvement of one of the ANN models, namely the CNM, represents a
contribution to the area of ANNs itself and to data mining. The original CNM algorithm
could be significantly enhanced regarding the aspect how it deals with the search space,
which results in a faster execution and less memory allocation.

A sketch of research issues that result from the PhD work rounds out the thesis.

Keywords: artificial neural networks, object-oriented frameworks, components,
software reusability, object-oriented design, software architectures, intelligent decision
support systems, hybrid intelligent systems.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 5

S u m m a r y

A COMPONENT ARCHITECTURE FOR ARTIFICIAL NEURAL NETWORK SYSTEMS 1

ACKNOWLEDGEMENTS .. 2

DEUTSCHE ZUSAMMENFASSUNG .. 2

ENGLISH ABSTRACT .. 4

SUMMARY.. 5

LIST OF FIGURES... 10

LIST OF TABLES... 13

LIST OF SOURCE CODE EXAMPLES .. 15

ACRONYMS ... 16

1 INTRODUCTION ... 18

1.1 MOTIVATION.. 18
1.2 PROBLEM STATEMENT.. 18
1.3 OVERVIEW OF THE PROPOSED SOLUTION .. 19
1.4 ORGANIZATION OF THE THESIS ... 20
1.5 STATEMENT OF GOALS AND CONTRIBUTIONS ... 21

2 CONTEXT AND STATE-OF-THE-ART.. 24

2.1 BIOLOGICAL MOTIVATION ... 24
2.1.1 The generic artificial neuron ... 25

2.1.1.1 Activation function .. 27
2.1.2 ANN Architectures ... 30

2.1.2.1 Single-Layer Feedforward Networks ... 30
2.1.2.2 Multi-Layer Feedforward Networks .. 30
2.1.2.3 Recurrent Networks ... 31
2.1.2.4 Lattice Networks.. 32

2.2 ANN LEARNING ALGORITHMS... 33
2.2.1 Hebbian Learning.. 34
2.2.2 Competitive Learning .. 35
2.2.3 Error Correction Learning .. 35

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 6

2.2.4 Reinforcement Learning .. 36
2.2.5 Stochastic Learning ... 37

2.3 ANN INPUT AND OUTPUT DATA.. 37
2.4 CHOSEN ANN MODELS ... 39

2.4.1 The Backpropagation .. 40
2.4.2 The Combinatorial Neural Model.. 46

2.4.2.1 The IRP learning.. 50
2.4.2.2 The SRP learning... 51

2.4.3 The Self-Organizing Feature Maps ... 52
2.4.4 The Adaptive Resonance Theory ... 56

2.4.4.1 The ART1 .. 58
2.5 SOFTWARE ENGINEERING ISSUES.. 67

2.5.1 Software Quality .. 67
2.5.2 Flexible software ... 68

2.5.2.1 Flexibility based on data .. 68
2.5.2.2 State of the art programming concepts... 69

2.5.3 Framework construction patterns.. 73
2.5.3.1 Hook combination patterns .. 74
2.5.3.2 Construction principles and the GoF design-patterns .. 76

2.5.4 Hot-spot-driven design .. 76
2.5.5 Applying Software Engineering Issues .. 78

3 THE CANN SOLUTION .. 79

3.1 INTRODUCTION .. 79
3.1.1 Why build Components for ANN?.. 80
3.1.2 The Hycones system as starting point.. 81

3.1.2.1 Adaptation problems.. 83
3.2 DESIGN OF A NEURAL NETWORK FRAMEWORK ARCHITECTURE....................................... 85

3.2.1 Summary of desired software characteristics and relation to other work 87
3.2.2 The ANN framework .. 88

3.2.2.1 Object-oriented modeling of the core entities of neural networks 88
3.2.2.2 Using Neuron and Synapse classes to create neural network topologies 91
3.2.2.3 The neuron and synapse behavior .. 92
3.2.2.4 Support of different neural network models through the Separation pattern.................. 94

3.2.3 The Simulation framework... 100
3.2.4 The Domain representation framework ... 103
3.2.5 The Converter framework.. 105
3.2.6 Describing problem domains using the Domain and converter frameworks................... 107

3.2.6.1 Backpropagation domain modeling for the XOR problem .. 107
3.2.6.2 CNM domain modeling for the XOR problem .. 108

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 7

3.2.7 Coupling Domain, ANN and simulation frameworks together .. 109
3.2.8 The ANN GUI framework .. 110
3.2.9 Packaging the frameworks in reusable components.. 115

3.3 RELATED WORK .. 117
3.3.1 The Freeman and Skapura (1992) solution ... 117

3.3.1.1 Array-based ANN structures.. 118
3.3.1.2 Linked-list-based ANN structures.. 120

3.3.2 The Timothy Masters (1993) solution .. 122
3.3.3 The Ivo Vondrák (1994) solution... 124

3.3.3.1 Hierarchy of Neurons... 125
3.3.3.2 Hierarchy of Connections .. 126
3.3.3.3 Hierarchy of Interconnections.. 127
3.3.3.4 Hierarchy of Artificial Neural Networks.. 128

3.3.4 The Joey Rogers (1997) solution ... 130
3.3.4.1 The Base_Node Class ... 130
3.3.4.2 The Base_Link class .. 135
3.3.4.3 The Feed_Forward_Node class.. 136
3.3.4.4 The Base_Network class.. 136

3.3.5 Final Remarks.. 139
3.4 CONCLUSIONS.. 140

4 ANN PARALLEL IMPLEMENTATION... 142

4.1 INTRODUCTION .. 142
4.2 TOWARDS A GENERIC PARALLELIZATION OF THE CANN FRAMEWORK......................... 145

4.2.1 The CANN parallel implementation... 147
4.2.2 CANN parallel solution test results ... 149

4.3 A PARALLEL SOLUTION FOR THE CNM... 155
4.3.1 CNM Parallel implementation... 157
4.3.2 CNM parallel solution test results ... 160

4.3.2.1 Test 1 – Running serially ... 162
4.3.2.2 Test 2 – Running with 2 threads .. 163
4.3.2.3 Test 3 – Running with 4 threads .. 164
4.3.2.4 Test 4 – Running with 8 threads .. 164
4.3.2.5 Test 5 – Running with 16 threads .. 165

4.4 CONCLUSIONS.. 166

5 IMPLEMENTING DISTRIBUTION IN THE CANN FRAMEWORK................................... 169

5.1 IMPLEMENTING DISTRIBUTION IN THE CANN SIMULATION ENVIRONMENT 169
5.1.1 Choosing the mobile component.. 170
5.1.2 The ANN instance as a Voyager Agent .. 170

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 8

5.1.3 Effects of moving the ANN objects... 174

5.2 TESTING THE CANN DISTRIBUTION SOLUTION ... 177
5.2.1 Measured results and discussion ... 178
5.2.2 Performance Results .. 180

5.2.2.1 Time measurements ... 180
5.2.2.2 Measuring CPU usage.. 181
5.2.2.3 Memory measurements .. 183
5.2.2.4 Measuring communication time... 184

5.3 TESTING THE VOYAGER COMMUNICATION MECHANISM... 188
5.3.1 Measuring the TCP traffic ... 189
5.3.2 Performance results... 190

5.4 RE-IMPLEMENTING THE CNM FRAMEWORK.. 192
5.4.1 A timestamp control for fetching the learning data ... 192
5.4.2 Controlling the learning data fetching .. 193

5.5 FUTURE IMPLEMENTATION POSSIBILITIES ... 194
5.5.1 Synchronization aspects... 194
5.5.2 Controlling the distributed learning process... 196
5.5.3 Dividing and distributing one ANN model .. 196

5.6 CONCLUSION.. 196

6 OPTIMIZATIONS OF THE COMBINATORIAL NEURAL MODEL 200

6.1 CNM OPTIMIZATIONS ... 200
6.1.1 Separation of Evidences by Hypotheses .. 200
6.1.2 Avoiding nonsense combinations... 201
6.1.3 Optimization on the combination order definition and generation 202

6.2 TEST RESULTS.. 204
6.3 CONCLUSIONS.. 208

7 ANN SIMULATION ... 209

7.1 THE CANN SIMULATOR .. 211
7.1.1 The Project .. 212
7.1.2 The Domain ... 213

7.1.2.1 The data converters.. 215
7.1.2.2 The Evidences.. 216
7.1.2.3 The Hypotheses.. 218

7.1.3 The ANN simulation... 219
7.1.3.1 Adding ANN components at runtime... 220
7.1.3.2 Creating ANN instances... 221
7.1.3.3 Simulating the ANN instances ... 221

7.2 ANALYSIS OF ANN SIMULATORS... 228

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 9

7.2.1 ECANSE (Environment for Computer Aided Neural Software Engineering).................. 228
7.2.2 ABLE (Agent Building and Learning Environment).. 232

7.3 CONCLUSION.. 235

8 CONCLUSIONS AND FUTURE WORK ... 239

8.1 CONCLUSIONS.. 239
8.2 FUTURE WORK... 242

9 REFERENCES .. 245

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 10

L i s t o f F i g u r e s

FIGURE 2.1 – GENERAL STRUCTURE OF A GENERIC NEURON (FREEMAN 1992)............................... 25
FIGURE 2.2 – THE ARTIFICIAL NEURON .. 26
FIGURE 2.3 – ACTIVATION FUNCTIONS (SIMPSON, 1992).. 28
FIGURE 2.4 – SINGLE-LAYER FEEDFORWARD NETWORK.. 30
FIGURE 2.5 – MULTILAYER FEEDFORWARD NETWORK FULLY CONNECTED 31
FIGURE 2.6 – MULTILAYER FEEDFORWARD NETWORK NOT FULLY CONNECTED 31
FIGURE 2.7 – RECURRENT NETWORK WITH NO SELF-FEEDBACK LOOPS .. 32
FIGURE 2.8 – LATTICE NETWORK .. 32
FIGURE 2.9 – GENERIC BACKPROPAGATION NETWORK ... 41
FIGURE 2.10 – HYPOTHETICAL ERROR SURFACE... 44
FIGURE 2.11 – THE CNM NETWORK GENERATION .. 47
FIGURE 2.12 - FUZZY SETS ... 48
FIGURE 2.13 – KOHONEN SOM... 53
FIGURE 2.14 – ART1 ARCHITECTURE.. 59
FIGURE 2.15 – THE 2/3 RULE .. 61
FIGURE 2.16 - SAMPLE FRAMEWORK CLASS HIERARCHY. (PREE, 1996) ... 72
FIGURE 2.17 - FRAMEWORK (A) BEFORE AND (B) AFTER SPECIALIZATION BY COMPOSITION. (PREE,

1996) .. 73
FIGURE 2.18 – (A) UNIFICATION AND (B) SEPARATION OF TEMPLATE AND HOOK CLASSES. (PREE,

1996) .. 75
FIGURE 2.19 – RECURSIVE COMBINATIONS OF TEMPLATE AND HOOK CLASSES. (PREE, 1996) 75
FIGURE 2.20 – LAYOUT OF FUNCTION HOT SPOT CARD. (PREE, 1996) .. 77
FIGURE 3.1 - HYCONES AS ANN GENERATOR. ... 82
FIGURE 3.2 - INCORPORATING EXPERT RULES INTO THE ANN TOPOLOGY. 83
FIGURE 3.3 – CANN FRAMEWORKS... 86
FIGURE 3.4 - THE RELATIONSHIP BETWEEN NEURON AND SYNAPSES OBJECTS. 88
FIGURE 3.5 - NEURON AND SYNAPSES COMPOSITION... 89
FIGURE 3.6 – NEURON HIERARCHY. .. 91
FIGURE 3.7 – SYNAPSE HIERARCHY. ... 92
FIGURE 3.8 – CANN HOT SPOT CARDS FOR NEURON AND SYNAPSE BEHAVIOR............................. 93
FIGURE 3.9 - DESIGN OF FLEXIBLE BEHAVIOR BASED ON THE BRIDGE PATTERN........................... 94
FIGURE 3.10 - ANN MODELS THAT IMPLEMENT INETIMPLEMENTATION. .. 95
FIGURE 3.11 - BUILDING CNM ARCHITECTURE. .. 97
FIGURE 3.12 – SEQUENCE DIAGRAM FOR A CASE COMPUTATION. .. 99
FIGURE 3.13 – CANN HOT SPOT CARDS FOR DIFFERENT ANN MODELS .. 100
FIGURE 3.14 - NETMANAGER ABSTRACTLY COUPLED TO PROJECT ... 102

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 11

FIGURE 3.15 - PROJECT COUPLING DOMAIN INSTANCES... 103
FIGURE 3.16 - FUZZY SET EXAMPLE.. 104
FIGURE 3.17 - DOMAIN REPRESENTATION.. 104
FIGURE 3.18 - DEALING WITH DIFFERENT DATA SOURCES... 105
FIGURE 3.19 - DATA CONVERSION AT THE EVIDENCE LEVEL. ... 106
FIGURE 3.20 - XOR ASCII FILE FOR BACKPROPAGATION AND CNM LEARNING........................... 107
FIGURE 3.21 - MODELING XOR DOMAIN FOR BACKPROPAGATION .. 108
FIGURE 3.22 - MODELLING XOR DOMAIN FOR CNM .. 109
FIGURE 3.23 - NETMANAGER IS ASSOCIATED TO A DOMAIN INSTANCE ... 110
FIGURE 3.24 - NEURON FETCHES ACTIVATION FROM ITS ASSOCIATED ATTRIBUTE INSTANCE..... 110
FIGURE 3.25 – GUI FRAMEWORK... 111
FIGURE 3.26 - FRAMENEURALNETWORK CONTAINING A BACKPROPAGATION ANN INSTANCE ... 112
FIGURE 3.27 - DIALOGLEARN PERFORMING THE LEARNING OF THE XOR PROBLEM..................... 113
FIGURE 3.28 - DIALOGCONSULTCASEBASE PERFORMING THE TESTING OF THE XOR PROBLEM .. 113
FIGURE 3.29 - DIALOGCONSULTUSERCASE PERFORMING THE TESTING OF A USER CASE 114
FIGURE 3.30 – BPDIALOGCONFIG CLASS FOR THE BACKPROPAGATION CONFIGURATION 114
FIGURE 3.31 – MOVING THE ANN COMPONENT TO RUN IN A REMOTE MACHINE 115
FIGURE 3.32 – TWO-LAYER NETWORK WEIGH AND OUTPUT ARRAYS (FREEMAN 1992)............... 118
FIGURE 3.33 – ARRAY DATA STRUCTURES FOR COMPUTING NETI (FREEMAN 1992)..................... 118
FIGURE 3.34 – LAYERED STRUCTURE (FREEMAN 1992).. 121
FIGURE 3.35 – NEURON HIERARCHY (VONDRÁK 1994) ... 125
FIGURE 3.36 – INTERCONNECTIONS HIERARCHY (VONDRÁK 1994) .. 128
FIGURE 3.37 – NEURAL NETWORK HIERARCHY (VONDRÁK 1994) .. 129
FIGURE 3.38 – OBJECT REPRESENTATION OF NETWORK TOPOLOGY (ROGERS, 1997)................... 131
FIGURE 3.39 – NEURAL NETWORK NODE HIERARCHY (ROGERS, 1997).. 132
FIGURE 3.40 – NEURAL NETWORK LINKS HIERARCHY (ROGERS, 1997) ... 135
FIGURE 4.1 - THREADS ON CNM, EACH SYNAPSE BECOMES A THREAD... 146
FIGURE 4.2 – THE PARALLEL ARCHITECTURE SOLUTION ... 149
FIGURE 4.3 – THE TIME DIFFERENCE BETWEEN RUNNING IN PARALLEL AND SEQUENTIALLY ... 150
FIGURE 4.4 – TWO CPU’S RUNNING TWO BACKPROPAGATION INSTANCES IN PARALLEL 152
FIGURE 4.5 –TWO CPU’S RUNNING BACKPROPAGATION AND SOM INSTANCES IN PARALLEL... 154
FIGURE 4.6 - USING THREADS ON CNM .. 156
FIGURE 4.7 - GROUP PROXIES INTERACTION DIAGRAM.. 158
FIGURE 4.8 – SPEED-UP FOR THE CNM PARALLEL SOLUTION ... 161
FIGURE 4.9 – TIME PERFORMANCE FOR SERIAL IMPLEMENTATION.. 163
FIGURE 4.10 – TIME PERFORMANCE WITH 2 THREADS ... 163
FIGURE 4.11 – TIME PERFORMANCE WITH 4 THREADS ... 164
FIGURE 4.12 – TIME PERFORMANCE WITH 8 THREADS ... 165
FIGURE 4.13 – TIME PERFORMANCE WITH 16 THREADS ... 166

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 12

FIGURE 5.1 - REMOTE MESSAGING USING PROXY ... 171
FIGURE 5.2 - ANN MODELS AS CLASSES OF INETIMPLEMENTATION. ... 172
FIGURE 5.3 - ASSOCIATING THE ANN TO THE DOMAIN CLASS .. 175
FIGURE 5.4 – PERFORMANCE RUNNING LOCALLY... 191
FIGURE 5.5 – PERFORMANCE RUNNING REMOTELY.. 191
FIGURE 6.1 – SEPARATION OF EVIDENCES BY HYPOTHESIS... 201
FIGURE 6.2 – AVOIDING NONSENSE COMBINATIONS .. 202
FIGURE 7.1 – ACTIONS OVER A CANN PROJECT.. 213
FIGURE 7.2 – THE POSSIBLE ACTIONS OVER THE DOMAIN... 214
FIGURE 7.3 – CREATING OR SELECTING A DOMAIN MODEL ... 215
FIGURE 7.4 – SELECTING THE DATA CONVERTER.. 215
FIGURE 7.5 – SETTING THE LEARN DATA SOURCE... 216
FIGURE 7.6 - LIST OF EVIDENCES .. 216
FIGURE 7.7 – EDITING ONE EVIDENCE .. 217
FIGURE 7.8 – EVIDENCE FETCHER... 218
FIGURE 7.9 – EDITING ONE HYPOTHESIS .. 219
FIGURE 7.10 – NEURAL NETWORK MENU... 220
FIGURE 7.11 – PLUGGING A NEW ANN COMPONENT AT RUNTIME.. 220
FIGURE 7.12 – CREATING A NEW ANN INSTANCE ... 221
FIGURE 7.13 – MANAGING THE ANN SIMULATION.. 222
FIGURE 7.14 – ANN SIMULATION FRAME ... 222
FIGURE 7.15 –BACKPROPAGATION CONFIGURATION.. 223
FIGURE 7.16 – THE SIMULATE MENU .. 223
FIGURE 7.17 – MOVING THE ANN COMPONENT TO RUN IN A REMOTE MACHINE 224
FIGURE 7.18 – BACKPROPAGATION LEARNING THE XOR PROBLEM... 224
FIGURE 7.19 – BACKPROPAGATION TESTING THE XOR PROBLEM .. 225
FIGURE 7.20 - PERFORMING THE TESTING OF A USER CASE... 226
FIGURE 7.21 – SOM LEARNING GRAPHICS (6 SNAPSHOTS)... 227
FIGURE 7.22 - ECANSE VISUAL SIMULATION ENVIRONMENT ... 229
FIGURE 7.23 – ABLE EDITOR .. 234

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 13

Li s t o f T a b l es

TABLE 2.1 – NAMING ISSUES OF CATALOG ENTRY. (PREE, 1996) .. 76
TABLE 3.1 – SOFTWARE CHARACTERISTICS AND THE ANALYZED RELATED WORK 87
TABLE 4.1 - NETWORKS RUNNING ON A MACHINE WITH ONE CPU... 150
TABLE 4.2 – BACKPROPAGATION RUNNING STANDALONE IN A 2 CPU’S MACHINE 151
TABLE 4.3 – TWO BACKPROPAGATION INSTANCES RUNNING IN PARALLEL IN A 2 CPU’S MACHINE

... 151
TABLE 4.4 – SOM RUNNING STANDALONE IN A 2 CPU’S MACHINE .. 152
TABLE 4.5 – TWO SOM INSTANCES RUNNING IN PARALLEL IN A 2 CPU’S MACHINE 153
TABLE 4.6 – BACKPROPAGATION AND SOM INSTANCES RUNNING IN PARALLEL IN A MACHINE WITH

TWO CPU’S ... 153
TABLE 4.7 – TIME AND MEMORY RESULTS .. 160
TABLE 5.1 – COMPUTERS USED TO TEST THE DISTRIBUTION... 178
TABLE 5.2 – NUMBER OF CNM NEURONS AFTER LEARNING ... 179
TABLE 5.3 – TIME TESTS... 180
TABLE 5.4 – CPU USAGE FOR GENERATION ON SIMILAR HARDWARE MACHINES......................... 181
TABLE 5.5 – CPU USAGE FOR GENERATION ON DIFFERENT HARDWARE MACHINES 181
TABLE 5.6 – CPU USAGE FOR GENERATION ON DIFFERENT HARDWARE MACHINES 181
TABLE 5.7 – CPU USAGE FOR LEARNING.. 182
TABLE 5.8 – CPU USAGE FOR LEARNING WITH LOCAL HARDWARE INFERIOR THAN THE REMOTE182
TABLE 5.9 – TEST 1 – GENERATING ONE CNM INSTANCE.. 184
TABLE 5.10 – TEST 2 – GENERATING 3 CNM INSTANCES... 184
TABLE 5.11 – LEARNING TIME FOR JDK1.3 AND VOYAGER 3.3 ... 185
TABLE 5.12 – LEARNING PERFORMANCE FOR BP AND ART1 .. 186
TABLE 5.13 – LEARNING TIME FETCHING THE LEARNING DATA LOCALLY.................................... 186
TABLE 5.14 – LEARNING TIME WITH NO PROXIES TO THE LOCAL PROGRAM................................. 187
TABLE 5.15 – LEARNING TIME WITH 2 ANN’S AT THE SAME TIME, ONE AT THE LOCAL MACHINE AND

THE OTHER AT THE REMOTE MACHINE ... 187
TABLE 5.16 – LEARNING TIME WITH 2 ANN’S AT THE SAME TIME AT THE REMOTE MACHINE ... 188
TABLE 5.17 – PERFORMANCE OF THE COMMUNICATION EXPERIMENT.. 190
TABLE 5.18 – LEARNING TIME USING TIME STAMP CONTROL ... 193
TABLE 5.19 – LEARNING TIME WITH THE CHANGE ON THE INPUT NEURON FUNCTIONALITY 194
TABLE 6.1 - NON-OPTIMIZED NETWORK FOR ORDER 4 ... 206
TABLE 6.2 - NON-OPTIMIZED NETWORK FOR ORDER 4 – ONLY ELIMINATING NON-SENSE

COMBINATIONS .. 206
TABLE 6.3 - OPTIMIZED NETWORK FOR ORDER 4 .. 207
TABLE 7.1 – CRITERIA FOR ANALYSING ANN SIMULATORS.. 211

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 14

TABLE 7.2 – SOFTWARE CHARACTERISTICS AND THE ANALYZED RELATED WORK 236
TABLE 7.3 – RESUMING CANN CHARACTERISTICS... 228
TABLE 7.4 – RESUMING ECANSE CHARACTERISTICS... 232
TABLE 7.5 – RESUMING ABLE CHARACTERISTICS.. 235

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 15

L i s t o f S o u r c e C o d e E x a m p l e s

CODE 3.1 - THE NEURON CLASS ... 90
CODE 3.2 - THE SYNAPSE CLASS... 90
CODE 3.3 – THE INETIMPLEMENTATION INTERFACE.. 96
CODE 3.4 – THE NETMANAGER CLASS IMPLEMENTATION .. 101
CODE 3.5 – THE PROJECT CLASS.. 102
CODE 3.6 – THE NEURON CLASS (VONDRÁK 1994).. 126
CODE 3.7 – THE CONNECTION CLASS (VONDRÁK 1994).. 127
CODE 3.8 – THE INTERCONNECTIONS CLASS (VONDRÁK 1994) .. 127
CODE 3.9 – THE NEURALNET CLASS (VONDRÁK 1994).. 129
CODE 3.10 - THE BASE_NODE CLASS (ROGERS, 1997). .. 134
CODE 3.11 - THE BASE_LINK CLASS (ROGERS, 1997) ... 136
CODE 3.12 - THE BASE_NETWORK CLASS (ROGERS, 1997) .. 138
CODE 4.1 – PARALLEL IMPLEMENTATION.. 148
CODE 4.2 - GROUP PROXIES ALGORITHM ... 158
CODE 4.3 – THE COMPUTEEVIDENTIALFLOW METHOD.. 159
CODE 4.4 – THE STARTEVIDENTIALFLOW METHOD .. 160
CODE 5.1 - THE NETMANAGER CLASS.. 172
CODE 5.2 - THE NETMANAGER CLASS (CONTINUED) ... 177
CODE 5.3 - THE AGENT DOCOMUNICATION METHOD .. 189
CODE 5.4 - THE RANDOMGENERATOR OBJECT GETNUMBER METHOD .. 189

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 16

A c r o n y m s

ABLE Agent Building & Learning Environment
ANN Artificial Neural Network
ANSI American National Standards Institute
API Application Program Interface
ART Adaptive Resonance Theory
ASCII American Standard Code for Information Interchange
BAM Bi-directional Associative Memory Simulation
BP Backpropagation Neural Network
CANN Components for Artificial Neural Networks
CLOS Common Lisp Object System
CNM Combinatorial Neural Model
CPU Central Processing Unit
ECANSE Environment for Computer Aided Neural Software Engineering
GoF �The gang of four�, Gamma et al. 1995.
GUI Graphical User Interface
HTML Hypertext Markup Language
ID Identifier
IO Input and output
IP Internet Protocol
JDK Java Development Kit
JVM Java Virtual Machine
LAN Local Area Network
NN Neural Network
OO Object-oriented
ORB Object Request Broker
PC Personal Computer
PDP Programmable Data Processor
RAD Rapid Application Development
RAM Random Access Memory
SOM Self-Organizing Feature Maps
SQL Structured Query Language
SWE Software Engineering

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 17

TCP Transmission Control Protocol
UFRGS Federal University of Rio Grande do Sul, Brazil
UML Unified Modeling Language
URL Uniform Resource Locator
VMI Vendor Managed Inventory
XML Extensible Markup Language
XOR Exclusive OR

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 18

1 I n t r o d u c t i o n

1.1 Motivation

The direction of the PhD thesis originated in the prototypes build in the realm of the
Master thesis at the State University of Rio Grande do Sul (UFRGS � Brazil �
http://www.inf.ufrgs.br). Some studied neural network models and their first prototype
implementations drew the attention of companies. Those wanted to have an expert system be
able to analyze historical data and to build knowledge about these data, in order to perform
decision-making. The Hycones system (Leão and Reategui, 1993) was developed for this
purpose. It was mainly applied to the medical area to support decision on heart diseases.
Later, another application also appeared requiring the application of Hycones in areas such as
credit scoring (Reategui and Campbell, 1994; and Quelle AG � http://www.quelle.de) and
logistics (newspaper distribution control system at RBS � http://www.clickrbs.com.br).

1.2 Problem statement

The implementation of the solutions prototype exposed the fragility of the Hycones
system as a software system. Applying it to different application areas showed the following
difficulties:

• The artificial neural network�s inner code had to be changed to adapt to each
application.

• The input and output artificial neural networks data handling had to be coded
nearly from scratch.

• A change from one artificial neural network model to another represented a
huge coding effort.

• The limits of hardware and software resources.

• The different parts of the system were implemented on different hardware and
software platforms.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 19

• The artificial neural networks algorithms had limitations such as not dealing
with combinatorial explosion.

The goal of the PhD thesis is to apply object-oriented component-based software
engineering construction principles to overcome these problems. One of the results is a
flexible architecture that facilitates the implementation of any artificial neural network model
and that can be applied to different domain problems.

1.3 Overview of the proposed solution

This work starts with the identification of the software limitations of the typical ANN
systems such as Hycones. The identified problems were solved by studying them in detail and
by designing and implementing completely new software solutions to each of them.

Initially, an object-oriented design of an artificial neural networks software solution was
built. A few so-called frameworks1 were identified and built in order to permit the
construction of any artificial neural network model based on them. Those frameworks
formed the basis for building four different artificial neural network models as software
components.

Other important frameworks were identified and implemented to perform tasks that
complement the artificial neural network�s functionality: A framework was created to build a
different domain knowledge model that facilitates the fast adaptation of an artificial neural
network model to any application problem at hand; another framework was built for fetching
data for learning and testing the artificial neural networks models; and finally a framework for
configuring, via user interface, the artificial neural network models was implemented.

Based on the whole set of frameworks implemented to build and support the artificial
neural network models, an artificial neural networks simulation framework was defined and a
complete simulation tool (CANN Simulation Tool) was built. On top of this simulation tool,
many domain problems can be modeled in parallel and different artificial neural network
models can run at the same time in order to solve the problems at hand. Four artificial neural
network components (CANN) were built based on the ANN frameworks. They run in the
simulation tool.

1 A piece of software that is extensible through the callback style of programming

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 20

Two empirical studies were accomplished in the area of software parallelism. First, the
study of the parallel software implementation of artificial neural networks, together with the
implementation of a general-purpose solution for running artificial neural networks in
parallel. Second, the study and implementation of a solution to run the simulation of the
ANN instances in a distributed way using an ORB. The two implementations where done in
order to give hints on how to improve the artificial neural networks performance by better
using the software and hardware infrastructure.

Finally, the CNM model algorithm received special attention on its design and
implementation using the given frameworks. Improvements on its algorithm and a parallel
implementation solution were proposed and implemented in the realm of this PhD work.

1.4 Organization of the thesis

The thesis is organized in 8 chapters. Chapter 2 is dedicated to introduce the computer
science areas involved in this thesis: Software Engineering (SWE) and Artificial Neural
Networks (ANN). There, ANNs are motivated by biological perspective and the four ANN
models implemented in the thesis are presented. Complementarily, the SWE concepts that
are extensively applied along the thesis are also introduced.

The following five chapters form the core parts of this thesis. Chapter 3 shows the
implementation of the ANN frameworks. It shows in detail the design decisions of each
framework and its relevant implementation aspects. It finally compares it to other work in the
area.

In sequence, the chapters 4 and 5 go deep on the parallel and distribution issues.
Chapter 4 introduces ANN parallel implementation and shows what was the possible
solution to have parallelism for the CANN simulation tool. Furthermore, this chapter shows
in detail the proposed and implemented parallel solution to the CNM (Machado and Rocha,
1989) model.

Chapter 5 approaches the implementation of a distribution framework for the ANN
components. The distribution solution is implemented in the CANN simulation tool in order
to have the possibility of running different ANN models at the same time in different
machines and centrally controlled.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 21

Chapter 6 explains contributions of this thesis to the ANN field where the CNM
artificial neural model has its learning algorithm optimized in order to be faster and allocate
less memory during this process.

Chapter 7 shows in detail the characteristics and functionalities of the CANN
simulation tool. It also compares this tool to other ones that are commercially available.
Chapter 8 has the conclusions of this work and the future research possibilities for its
continuation.

1.5 Statement of goals and contributions

The main goal of the thesis is to come up with a flexible and efficient design for ANN
implementations. For this purpose, object-oriented framework technology has been applied to
the ANN domain for the first time. A framework for ANN development is constructed and
various ANN models are implemented using this framework in order to evaluate its
applicability. It is an important goal of this thesis to give contributions on how to better develop
ANN software in order to make the ANN functionality optimized as a software system. It is
also part of the goals to come up with contributions on how to implement ANN parallelism in
software and code mobility for ANN architectures in order to provide ANN execution in a distributed
system.

To promote contributions to ANN models is another important goal and is concentrated on
the CNM model, where the author has extensive experience regarding its development and
applications.

To better measure the importance of these goals, the software development practices
done so far are evaluated. It means the identification of main development problems. To
solve these problems techniques from the SWE area are chosen. This work shows these
techniques are appropriate to ANN software development.

The contributions of this work are concentrated on the areas of software engineering
and artificial neural networks. In the software engineering area the main contribution is to
show the applicability of object-oriented framework technology to the construction of ANN
software. This work focused on:

• Analyzing the ANN domain area.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 22

• Deriving from the design analysis the design for the construction of the ANN
framework.

• Constructing different types of ANN architectures in order to prove the
framework�s applicability.

• Analyzing and implementing a solution for a parallel implementation of ANNs.

• Analyzing and implementing ANN code mobility and ANN distributed
execution in a LAN.

• Implementing a simulation tool for ANN based on the defined frameworks.

• Deploying and applying the constructed ANN simulation tool to different
application areas.

• Evolving the CNM artificial neural network by proposing and implementing a
learning and testing algorithm that is faster and uses a smaller memory
footprint.

• Proposing and implementing a parallel solution for the CNM algorithm.

Each of those contributions were carefully designed, implemented, tested and
compared to related work. Some SWE techniques were extensively used and supported by
this work. The hot-spot-driven design (Pree, 1995) was applied to the design of the flexible
parts of the frameworks showing its applicability to the ANN area. Design-patterns (Gamma
et al. 1995) and meta-patterns (Pree, 1995) proved to be an important vehicle of proper
design communication among the involved developers. The design of the ANN frameworks
can be shared with the whole community of ANN developers. The coining of the concept of
Framelets (Pree and Koskimies, 1999 and 2000) was also supported by the design and
implementation of the ANN basic frameworks that can be considered as Framelets. The
accumulated experience in building the ANN framework components is an important
contribution of this work and is shared with the research community through this text and
the collection of publications produced along the development of this work.

The new ANN components have been used in much different application areas as:
weather forecast (Viademonte et. al, 2001a and 2001b); personalization of Internet sites
where the ANN components are used to build knowledge about the user preferences,

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 23

navigation and transaction habits to build a personalized environment for a better user
experience (http://www.godigital.com); and e-business such as the creation of an agent to
analyze marketplace negotiation data and the optimization of the supply chain performance
by implementing a VMI (Vendor Managed Inventory) algorithm based on ANN
(http://www.mercador.com).

As mentioned before, this work resulted in several publications:

• (Pree, Beckenkamp and Da Rosa, 1997) introduces the software engineering
challenges of the redesign of the Hycones system.

• (Da Rosa, Beckenkamp and Hoppen, 1997) approaches the use of fuzzy logic
to model semantic variables in expert systems.

• (Beckenkamp, Pree and Feldens, 1998) introduces optimizations to the CNM
algorithm.

• (Beckenkamp and Pree, 1999) describes the artificial neural networks
frameworks components design.

• (Beckenkamp and Pree, 2000) exposes details of the artificial neural networks
frameworks implementation.

• (Da Rosa, Burnstein and Beckenkamp, 2000) presents results of the application
of the Voyager ORB on the distribution of ANN components.

• (Viademonte, Burnstein, Dahni, and Willians, 2001a and Viademonte and
Burnstein, 2001b) presents the first results of a weather forecast expert system
where the CANN simulation tool is applied.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 24

2 C o n t e x t a n d S t a t e - o f - t h e - a r t

A first step to understand the origin of ANNs is to relate them to the biological
paradigm. It is important to know a about the biological neuron and nerves to understand
why the ANN models make certain approximations to the biology. It is important to
understand when the approximations are poor and when they are reasonable.

2.1 Biological Motivation

The brain�s elementary building blocks are the neurons. The study of the neuron, its
interconnections and its role in the information processing is one important research field in
modern biology. The research on ANN starts by trying to simulate the function of a neuron.
ANN researchers adopt a minimal cellular structure that can be seen in Figure 2.1

The dendrites are the transmission channels for the incoming information. The
synapses are the contact regions with other cells and are responsible for supplying the
dendrites with information. Some organs inside the cell body are responsible for keeping the
cell continuously working. The mitochondria are responsible for supplying the cell with
energy. The cell has one axon that is responsible for transmitting the output signal to other
neurons.

The information processing in the cell membrane is done via electrical signals produced
by diffusion. In short, neurons transmit information using action potentials. The information
processing involves a complex electrical combination and chemical process. The synapses
control the direction of the information transmission. They can be inhibitory or excitatory
depending on the kind of ion flowing through it.

The cell processes information by integrating incoming signals. If the flow of ions
(membrane potential) reaches a certain threshold, an action potential is generated at the axon
of the cell. The information is not only transmitted but also weighed by the cell. Rojas (Rojas,
1996) explains that �signals combined in an excitatory or inhibitory way can be used to
implement any desired logic function�. This explains the huge information processing
capability of the neuron systems.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 25

Cell Body

Nodes of Ranvier

Myelin sheath
Axon

Nucleus

Synapse

Dendrites

Axon hillock

Figure 2.1 � General structure of a generic neuron (Freeman 1992)

Neuron information is stored at synapses. The synapses control the passage of ions,
thus controlling the cell depolarization. The plasticity is the synaptic connection will
determine the capacity of the cell in acting properly. Therefore, the synapses control is
important information to the whole system�s functionality. In ANN this synaptic control
efficiency is simulated via a constant that is multiplied to the flowing information on the
input channels, the weight.

The storage, processing and transmission of information at the neuron level are still not
fully understood. Neurons form such complex nervous systems that researches in many areas
such as mathematics, chemistry, medicine and psychology are trying to understand how cell
nerves act. Computer science has played an important role on this research being an
important test bed for the different concepts and ideas. Furthermore, ANN also can be seen
as a computation paradigm that has much to be explored by scientists of computer science.
For a deeper study on the biological foundations see Anderson, 1995 or Rojas, 1996.

2.1.1 The generic artificial neuron

The term artificial neuron is used in the literature interchangeably with: node, unit,
processing element or even computational unit. Depending on the author�s approach or
goals, one of those will be used. Here the term neuron will be kept in order to maintain the

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 26

analogy to the biological structures when modeling the framework objects. But whenever
necessary, neurons will be distinguished by using the terms natural or artificial.

The artificial neuron is a pretty huge simplification of the natural neuron. It is
important not to be too restrictive and not to try to make a one-to-one relationship between
the natural and the artificial neurons. In this work there are no discussions about the
simplifications done. There are no discussions whether the models are appropriate
simplifications of the reality or not. This work is based on what is already accepted in the
community, and tries to improve those concepts from a software-engineering point of view.

S u m m i n g
J u n c t i o n

A c t i v a t i o n
F u n c t i o n

W i 1

W i 2

W i n

x 1

x 2

x n
s y n a p t i c w e i g h t s
t i m e s i n p u t s i g n a l s

I n p u t
S i g n a l s O u t p u t

S i g n a l y i

Figure 2.2 � The artificial neuron

The artificial neuron has input and output channels and a cell body. The synapses are
the contact points between the cell body and the input or output connections, having a
weight associated to them. The artificial neuron can be divided into two parts: the first is a
simple integrator of synaptic inputs weighed by connection strengths; the second is a
function that operates on the output of the integrator. The result of the second function will
be the neuron output. The artificial neuron is schematically drawn in Figure 2.2.

There are several mechanisms for calculating the neuron output value, such as: linear
combination, mean-variance connections and min-max connections (Simpson, 1992). The
most common way of doing it is the linear combination where the dot product (inner
product) of the input values with the connection weights is calculated. In general it is
followed by a nonlinear operation, the activation function (also called neuron function).

Next a detailed description of the linear combination is shown:

1. The ANN has several inputs (xj) and one output (yi).

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 27

2. Each input connection has an associated weight that controls the connection
strength (wij) and is usually a real number.

3. The weights can be inhibitory or excitatory (typically negative and positive
values).

4. The net input (Equation 2.1) is calculated by summing the input values
multiplied by the corresponding weights (inner product or dot product).

ij
j

ji wxnet ∑=

Equation 2.1 - Calculating the net of the neuron

5. The output value (Equation 2.2) is calculated applying an activation function
that uses the neti:

)(iii netfy =

Equation 2.2 - Calculating the output of the neuron

Some possible activation functions are shown in the following section.

2.1.1.1 Activation function

There are many possible activation functions. The most common ones are: the Linear,
the Step, the Ramp, the Sigmoid, and the Gaussian functions. The last four functions
introduce nonlinearity in the network dynamics by bounding the output values within a fixed
range.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 28

x

f(x) f(x)

f(x) f(x)

f(x)

x

x x

x

θ

−δ

β

(a) (b)

(c) (d)

(e)

+γ

-γ

variance

Figure 2.3 � Activation functions (Simpson, 1992)

Linear Function

The Linear function produces a linearly modulated output. It is described by Equation
2.3 and can be seen in Figure 2.3(a):

xxf α=)(

Equation 2.3 � Linear function

Where α is a positive scalar.

Step Function

The Step function produces only two values, β and -δ. If x is equal or exceeds a
predefined value θ the function produces β, otherwise it produces -δ. The values β and δ are

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 29

positive scalars. This function is binary and is used in neural models such as the Hopfield
(Hopfield, 1982) and the BAM (Kosko, 1988). The Step function is defined on Equation 2.4
and its result can be seen in Figure 2.3(b).





<−
≥

=
θδ
θβ

xif

xif
xf)(

Equation 2.4 � Step function

 Ramp Function

The Ramp function is a combination of the linear and the step functions. It has upper
and lower bounds and allows a linear response between them. It is defined on Equation 2.5
and can be seen in Figure 2.3(c). The value γ is the function saturation.









−≤−
<
≥

=
γγ
γ
γγ

xif

xifx

xif

xf)(

Equation 2.5 � Ramp function

 Sigmoid Function

The Sigmoid function is a continuous version of the Ramp function and provides a
graded, nonlinear response within a specified range. The most common sigmoid function is
the Logistic distribution function that provides an output value from 0 to 1.The value α > 0
and usually equal to 1. The Sigmoid function definition is shown at Equation 2.6 and its
effect can be seen in Figure 2.3(d).

xe
xf α−+

=
1

1
)(

Equation 2.6 � Sigmoid function

Gaussian Function

The Gaussian function is symmetric in its origin. It requires a variance value υ>0 to
shape the function. The Gaussian function definition is shown at Equation 2.7 and its effect
can be seen in Figure 2.3(e).

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 30

)exp()(
2

υ
x

xf
−=

Equation 2.7 � Gaussian function

2.1.2 ANN Architectures

The natural neurons form the neural nerves when connected. In ANN the artificial
neurons are connected in many different ways forming architectural characteristics. The
learning algorithms and the architectures are closely related. It is important to have a clear
concept of how the artificial neurons may be interconnected to form the specific
architectures, because this will define how the computer implementations of the architectures
can be done. The possible computer implementation solutions for the specific architectures
and learning algorithms are going to be explained later. Following the description of the
principal ANN architectures is as follows.

2.1.2.1 Single-Layer Feedforward Networks

In this simplest network, a layer of input neurons is connected to a layer of output
neurons. The �single-layer� designation refers to the output layer. The layer of input neurons
is not considered because it does not process any computation over the input values. It just
bypasses the input values. An example of this kind of neural network is a linear associative
memory where an input pattern is associated to an output pattern, both in form of a vector.
Figure 2.4 shows a single-layer network of 3 output nodes.

I n p u t L a y e r

O u t p u t L a y e r

Figure 2.4 � Single-layer feedforward network

2.1.2.2 Multi-Layer Feedforward Networks

In this architecture, one or more hidden layers of neurons are present. Those networks
are able to deal with higher-order problems because of the extra set of connections and the
extra dimension of neural iterations (Churchland and Sejnowski, 1992; Haykin, 1994).

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 31

Figure 2.5 shows a multi-layer 4-2-3 network that means a network formed by an input
layer with 4 neurons, only one hidden layer with 2 neurons and an output layer with 3
neurons. The network is fully connected because each neuron in one layer is connected to all
neurons in the next layer. It also may happen that not all the neurons of one layer are
connected to all neurons of the subsequent layer. This may happen when the user has a
certain previous knowledge about the pattern being classified. He/she is then able to preset
the network connections. Figure 2.6 shows a multilayer 4-2-3 network not fully connected.

I n p u t L a y e r

O u t p u t L a y e r

Figure 2.5 � Multilayer feedforward network fully connected

I n p u t L a y e r

O u t p u t L a y e r

Figure 2.6 � Multilayer feedforward network not fully connected

2.1.2.3 Recurrent Networks

This network model has at least one feedback loop. It may have the same architecture
as a layered network, but it is necessary to have the feedback. The feedback can happen from
the output of one neuron back to the input of another neuron. This feedback may happen
among neurons of the same layer or neurons of different ones. The feedback may also
happen as a self-feedback when the output of the neuron is returned to its own input. The
feedback deeply influences the network learning capability and its performance. Figure 2.7

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 32

shows a single-layer recurrent network where the output signals of the neurons are fed to the
input of the other neurons in the same layer.

I n p u t L a y e r

O u t p u t L a y e r

Figure 2.7 � Recurrent network with no self-feedback loops

2.1.2.4 Lattice Networks

Lattice Networks consist of networks formed by arrays of neurons at any dimension.
An input neuron is associated to each array supplying the signal to the array. Figure 2.8 shows
a two-dimensional lattice network of 3-by-3 neurons fed from a layer of 3 input neurons.

For each of the above architectures, various learning algorithms were proposed. In this
work, the last 3 architectures were considered when choosing the test models once the single-
layer is a simplification of the multi-layer. Two multi-layer models were chosen, one case of
fully connected network and one case of not fully connected network. The fully connected
one is the Backpropagation (Rumelhard and McClelland, 1986) and the other one is the
CNM (Machado and Rocha, 1990). The chosen recurrent network is the ART1 model
(Grossberg, 1976; Grossberg, 1987) and the chosen lattice model is the SOM (Kohonen,
1982). The description of these 4 models is presented in Section 2.2 below.

I n p u t
L a y e r

O u t p u t
L a y e r

Figure 2.8 � Lattice network

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 33

2.2 ANN Learning Algorithms

Since the information of how the neurons process data is on the weights, the weight
values will determine whether the neuron is able to accomplish a certain task or not. So
learning is a process of finding weights that represent the system knowledge. In practice, the
learning process is the modification of the weight values in order to make the output values
the proper ones, given a certain input data. The learning law is determined by the
modification of the strength of synaptic junctions based on a system of differential equations
for the weight values. The system of equations is solved to an acceptable approximation
solution.

The values of the connection weights will determine how well the neural network
solves the problems. These values may be predefined and hardwired into the network.
However, such method is rarely adopted because it is very difficult to know in advance the
appropriate values for the weights. A learning algorithm often determines the values of the
weights. The learning algorithm is an automatic adaptive method that tries to fit the
appropriate weights to the system solution. There is no explicit programming for the solution
achieved.

Several algorithms are available for changing the values of the connection weights. It is
not the goal here to cover all the possible algorithms but to introduce the general ideas
behind them. The learning algorithms are divided into two categories: supervised and
unsupervised learning.

Supervised learning is a process that incorporates global information and/or a teacher.
The teacher regulates the learning, informs the network what it has to learn and checks if it
has properly learned or not. Supervised learning has information deciding when to turn off
the learning, deciding how long and how often to present each datum for learning, and
supplying performance information. Some well-known algorithms that implement supervised
learning are error correction learning, reinforcement learning and stochastic learning.

Supervised learning can be subdivided into two subcategories: structural and temporal
learning. The first tries to find the best input/output pattern relationship for each pattern
pair. It is used to solve problems such as pattern classification and pattern matching. The
second one is concerned with finding a sequence of patterns necessary to achieve some final

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 34

outcome. The current response of the network is dependent on the previous inputs and
responses. Examples of use are prediction and control.

The unsupervised learning uses only local information during the learning. It organizes
presented data discovering their collective properties. Examples of unsupervised algorithms
are Hebbian learning and competitive learning.

In this work, there is no necessity to build up a complete taxonomy of the possible
learning algorithms. There are several algorithms with innumerable variations. More complete
lists of learning algorithms can be found in the neural networks literature such as Haykin,
1994; Simpson, 1992; and Rojas 1996.

A brief explanation of some relevant supervised and unsupervised learning algorithms
follows.

2.2.1 Hebbian Learning

It is the simplest way of adjusting the connection weight values. It is based on the work
of the neuropsychologist Donald O. Hebb (1949) (Haykin, 1994). Hebb hypothesized that
the change in a synapse�s efficacy is prompted by a neuron�s ability to produce an output
signal. It proposes a correlation-based adjustment of the connection weight values. That
means if the activation of a neuron A repeatedly and persistently caused a neuron B to fire,
then the efficacy of the connection among those neurons is improved. This idea was
expanded to the inverse sense where either uncorrelated or negatively correlated activity
produces synaptic weakening.

The Hebbian synapses efficiency thus is a mechanism that is time dependent because it
relies on the exact time of occurrence of the presynaptic and postsynaptic activities. It is also
a highly local mechanism where the local available information is used to produce a local
synaptic modification. Finally, the Hebbian synapse has an interactive nature because it
depends on activities on both sides of the synapse, that is, it depends on the interaction
among the presynaptic and postsynaptic activities.

The mathematical models of Hebbian learning can be found in (Haykin, 1994; and
Simpson, 1992). Important neural network models that implement this kind of learning
include:

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 35

• The Linear Associative Memory (Anderson, 1970; Kohonen, 1972; Haykin
1994) that employs this learning and analyzes its capabilities;

• The Hopfield network (Hopfield, 1982) which is a one-layer network that
restricts the neuron activity to either binary {0,1} or bipolar {-1,1} values and
introduces feedback connections forming a nonlinear, dynamic system;

• The Bidirectional Associative Memory (BAM) (Kosko, 1988), which
implements this learning in a two-layer network.

2.2.2 Competitive Learning

Competitive learning is a method of automatically creating classes for a set of input
patterns. This kind of learning was introduced and extensively studied by Grossberg
(Grossberg 1970, and 1982). The basic idea behind this learning method is that the output
neurons compete among themselves for being the one to fire. Typically the input data is
organized as vectors and the neural network maps the input vectors into its synaptic weights.
The classes are represented by the groups of neurons that have the nearest synaptic vectors to
a given input vector pattern. Important implementations of this kind of learning are:

• The Adaptive Resonance Theory (ART) (Grossberg, 1987) where the neurons
of the competitive layers shall compete to find appropriate pattern
classifications without compromising the neural network capacities of
generalization (stability) and discrimination (plasticity);

• The Self-Organizing Feature Maps (SOM) also known as the Kohonen model
(Kohonen, 1984) where neurons in the competitive layer compete to map the
input features trying to simulate the cerebral cortex areas of storing the
knowledge.

2.2.3 Error Correction Learning

When applying a data value to the input layer of neurons of a neural network, this data
value is processed by the network neurons sequentially until a signal reaches the output
neurons of the network. The output values produced by the output neurons should be the
desired output values. A learning algorithm can be used to gradually approximate the
computed output to the desired output. The error correction learning adjusts the connection

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 36

weights considering the proportional difference between the desired and the computed
values.

A two-layer network implementing error correction learning is able to solve linear
separable problems. Examples of two-layer neural networks that implement error correction
learning are:

• The Perceptron (Rosenblatt, 1962);

• The ADALINE (Widrow and Hoff, 1960).

A multilayer network using error correction learning is able to capture nonlinear
mappings between the input and output patterns. For a long time the problem was to
establish an appropriate algorithm to do the error correction for the hidden neurons
connection weights based on the output neurons output values. The point was to determine
how dependent the network output is from the output generated by the hidden neurons. It is
ultimately a problem of minimization of a cost-function based on the error signal produced
by the network output. The solution is the use of partial differentiation to calculate weight
changes for any weight in the network (the gradient descent method; Widrow and Stearns,
1985; Haykin 1994). An example of neural network using the multilayer error correction
algorithm is:

• The Backpropagation (Werbos, 1974; Parker, 1985; leCun, 1985; Rumelhart,
Hinton and Williams, 1986), which introduced an error correction algorithm for
multilayer networks.

2.2.4 Reinforcement Learning

It is similar to error correction learning because the weights are also reinforced for
correct performance, and punished for incorrect performance. The difference is that the error
correction uses a more specific algorithm where the output of each neuron on the output
layer is considered, while the reinforcement learning uses nonspecific error information to
determine the performance of the network. Furthermore, in reinforcement learning the
gradient descent is performed in probability space while in error correction learning is
performed in error space. The reinforcement learning is ideal for using in prediction and
control where there is no specific error information available, only overall performance
information. Neural network examples that use reinforcement learning are:

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 37

• The Adaptive Heuristic Critic neural network (Barto et al.,1983) which
introduced the use of a critic to convert the primary reinforcement signal
received from the environment into a higher-quality reinforcement signal called
the heuristic reinforcement signal. The learning system consists of three
components very much used in Artificial Intelligence: learning element,
knowledge base and performance element. The learning element is responsible
for doing all changes in the knowledge base, and the performance element is
responsible for selecting actions randomly on the basis of a distribution that is
determined by the knowledge base;

• The Associative Reward-Penalty neural network (Barto, 1985).

2.2.5 Stochastic Learning

This learning method adjusts connection weights to a multilayer network using random
process, probability and energy relationship. The neural network escapes local energy minima
in favor of a deeper energy minimum via probabilistic acceptance of energy states. The
learning process is governed by a �temperature� parameter that slowly decreases the number
of probabilistically accepted higher energy states. An example of this learning is:

• The Boltzman machine (Ackley et al. 1985).

2.3 ANN Input and Output Data

The neural network has to be set with data to do the learning and testing processes. All
models need an input data pattern to be applied in its input neurons in order to learn or test
this data pattern. The data to be applied to the network must be prepared in a way that the
network is able to understand and process it. The quality of what is learned by the neural
network depends very much on what the patterns are representing. Typically, each data
pattern must be transformed in a vector of values that represent the pattern to be applied.
The appropriate transformation of the data in the input vector is essential to the learning
process. Many different features can be modeled from the same problem at hand. For
example, the age of a person can be modeled as discrete values, sets, or fuzzy sets.
Depending on how it was modeled, the network can succeed or not in the learning process.

Furthermore, there are neural networks that need to have input and output patterns
presented during the learning process, the networks based on supervised learning such as the

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 38

error correction learning algorithm. The input pattern is applied on the input neurons, then
the signal flows over the network producing an output. The produced output is then
compared with the desired output for the given input pattern. The comparison results in a
difference that is used to do the error correction of the network connection weights.

Some neural networks accept only binary data as input such as the discrete Hopfield
model (Hopfield, 1982), other networks accept real numbers like the Backpropagation
(Werbos, 1974; Parker, 1985; leCun, 1985; Rumelhart, Hinton and Williams, 1986). The
number of neurons on the network input layer usually is determined by the size of the vector
to be applied, so that each vector element value is applied to one input neuron. The number
of neurons in the input and the output layers are not necessarily the same.

The data preparation (pre-processing) for applying to the neural network simulation is a
problem that has to be faced by the developer. A programmer often has to code the data
transformation to the chosen ANN model, take care of the chosen ANN architecture (the
number of neurons on the input and output layers) and so on.

The hard coding of the data preparation can generate overhead in many situations:

• For each new problem that the ANN has to be applied, a specific program has
to be created to do the appropriate data pre-processing.

• Frequently the ANN architecture is changed during the process of finding the
appropriate solution because certain features are added, removed or applied in
a different way.

• Sometimes the solution via a neural model is not possible and the programmer
chooses to go for another model. This may imply changing completely the way
the data has to be pre-processed.

To avoid reprogramming of the data pre-processing in each of the above situations, it
is important to use appropriate pre-processing tools that can easily integrate with the ANN
implementation. One solution to have a nice integration is to create a pre-processing
framework that deals with the data independently of the ANN model and the selected
features. The construction of such a framework is proposed in this work via the Domain
framework that is explained in Chapter 3.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 39

2.4 Chosen ANN Models

In the realm of this work, it is not possible to approach the various existing ANN
models. Few models were picked up among the most important ones, based on some criteria
such as: application interest (potential), architecture and kind of learning. The idea is to be
able to cover a good variety of situations, being able to implement enough generalizations
that could be useful for most of the ANN models without having to implement many
models.

The first chosen model was the Backpropagation (Werbos, 1974; Parker, 1985; leCun,
1985; Rumelhart, Hinton and Williams, 1986). This model implements a supervised learning
based on the error correction learning algorithm. Its architecture is feedforward multilayer
and it is fully connected. The Backpropagation is a widely used model for structural and
temporal classifications. There are many variations of this model.

The second chosen model is the Combinatorial Neural Model (CNM) (Machado and
Rocha 1990). This model also implements supervised learning based on a variation of the
error backpropagation learning algorithm. The network is feedforward and not fully
connected. Besides being an important and interesting neural model by its concepts, the
reasons to implement it in this work were twofold: the profound knowledge of the author on
this model; and the special interest in the application of this model on the credit scoring
problem of companies.

Third, a typical unsupervised competitive learning model was chosen, the Self-
Organizing Feature Map (SOM) (Kohonen, 1984). The SOM architecture is based on a two-
dimensional lattice map. The SOM model has been largely applied in different areas such as
image and speech recognition.

Finally, another unsupervised competitive learning model was chosen, the Adaptive
Resonance Theory (ART) (Grossberg, 1987). The extra important architectural aspect
implemented by this model is the presence of feedback connections among its neurons, so
the network has a recurrent architecture.

Next, each of the four models is introduced. The goal here is not only to introduce the
theoretical aspects of each model but also to find out the main characteristics of each one
and, specially, the commonalties among the models. Those characteristics and commonalties
are important to properly create an object model to build the neural network components.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 40

2.4.1 The Backpropagation

The Backpropagation neural network (Werbos, 1974; Parker, 1985; leCun, 1985;
Rumelhart, Hinton and Williams, 1986) is a multilayer, feedforward network, using a
supervised learning mode based on error corrections. Minsky and Papert (1969) have
provided a very careful analysis of the capabilities of the neural models proposed so far. At
that moment, the Perceptron was offered a very simple guaranteed learning rule (the delta
rule � Widrow and Hoff, 1960) for all problems that can be solved by a two-layer
feedforward network. What Minsky and Papert (1969) have shown was that this learning rule
was capable of solving only linear separable problems. Later, Rumelhart, Hinton and
Williams (1986) have shown that the addition of hidden neurons to the neural network
architecture would permit the mapping of the problem representation in a way that non-
linear separable problems could be solved.

The problem, at that moment, was that there was no specified learning rule to cope
with the hidden neurons. The solutions that came up later to solve this problem were the
following three:

• The addition of weight values on the hidden neurons by hand, assuming some
reasonable performance;

• The competitive learning where unsupervised learning rules are applied in order
to automatically develop the hidden neurons.

• The creation of a learning procedure capable of learning an internal
representation (using the hidden neurons) that is adequate for performing the
task at hand.

The Generalized Delta Rule represents the latest approach, which implements a
supervised learning algorithm based on the error correction in a multilayer neural network
and which is known as the Backpropagation neural network. The proposed learning
procedure involves the presentation of a set of input and output patterns to the neural
network. The input patterns typically correspond to a sample of the real patterns. For each
input pattern one output pattern is determined. The output patterns are the known
classification of the correspondent input patterns. The patterns are represented in the form of
a vector. When learning, the system first uses the input vector to produce its own output
vector and then compares this with the desired output (the output pattern). If there is no

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 41

difference, no learning takes place, but if there is a difference, the weights of the network are
changed in order to reduce this difference.

The generalized delta rule minimizes the squares of the differences between the actual
and the desired output values summed over the output neurons and all pairs of input/output
vectors. There are many ways of deriving the delta rule; derivations are detailed in (Rumelhart
at al.1986).

Figure 2.9 shows a generic Backpropagation neural network architecture with one layer
of hidden neurons. The network is fully connected, having all neurons of one layer connected
to all neurons of the next layer. It has an input layer which number of neurons corresponds
to the size of the input vector. The number of neurons for the output layer corresponds to
the size of the output vector. The Backpropagation may have more than one layer of hidden
neurons. The number of neurons on the hidden layer may define the capability of the
network in mapping the problem properly. Usually the determination of the number of
neurons on the hidden layers and the number of hidden layers is very difficult. Typically, the
network developer or user determines them empirically.

I n p u t L a y e r

O u t p u t L a y e r

H i d d e n L a y e r

. . .

I n p u t P a t t e r n s

O u t p u t P a t t e r n s

. . .

Figure 2.9 � Generic Backpropagation network

Next, a sequence of equations will be introduced showing the mathematical description
of the generalized delta rule or the Backpropagation algorithm.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 42

First the input vector xp = (xp1, xp2,�, xpN)t is applied to the input layer of the
network. The input neurons just bypass the input values to the hidden neurons via the
connection synapses. The hidden neurons will calculate its net using Equation 2.8:

∑
=

+=
N

i
jpijipj xwnet

1

θ

Equation 2.8 � Hidden neurons net

In Equation 2.8, p is the pattern being learned, j denotes the jth hidden unit, jiw is the

weight on the connection from the ith input unit to the jth hidden unit, and jθ is the bias

value. The bias is useful to accelerate the network convergence. Equation 2.9 gives the
activation of the hidden neuron.

)(pjjpj netfi =

Equation 2.9 � Hidden neurons activation

The calculation of the output neurons net (netpk) and the corresponding output value
(Opk) is the same as shown in Equations 2.10 and 2.11. In these equations, the difference to
Equations 2.8 and 2.9 is that the index k denotes the kth output unit.

∑
=

+=
N

j
kpjkjpk iwnet

1

θ

Equation 2.10 � Hidden neurons net

)(pkkpk netfo =

Equation 2.11 � Hidden neurons activation

Function f can assume several forms as seen previously on the activation functions
exemplified in Figure 2.3 (Activation functions). Typically, two forms are of interest: linear
and sigmoid output functions given by Equations 2.12 and 2.13 respectively. The same
function forms are valid for both hidden and output neurons.

pkpkk netnetf =)(

Equation 2.12 � Linear output function

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 43

1)1()(−−
+= pk

pkk

net
enetf

Equation 2.13 � Sigmoid output function

After propagating the input signals over the network as explained by the equations
above, it is time to calculate the local gradients for the output and hidden layers. This
calculation is done based on the difference between the real and the desired output, that is
the principle of the supervised learning as already explained. The calculation of the local
gradients for the hidden neurons is done before the update of the connection weights to the
output layer neurons. Equation 2.14 shows the calculation of the local gradients for the
output neurons.

)()(´
pkkpkpkpk netfoy −=δ

Equation 2.14 � Output neurons local gradients function

Equation 2.15 shows the calculation of the local gradients for the hidden neurons.

∑=
k

kjpkpjjpj wnetf δδ)(´

Equation 2.15 � Hidden neurons local gradients function

Equation 2.16 shows the f´ function that is the derivative of the sigmoid activation
function in respect to its total input, netpk. The function shown is the one used for the output
neurons, the same is valid for the hidden neurons changing the index k by index j.

)1()(´
pkpkpkk ooof −=

Equation 2.16 � Sigmoid function derivative

Having calculated the local gradients for all neurons on the output and hidden layers, it
is time to go backwards recalculating the weights of the neural network based on those local
gradients. It is necessary to calculate the negative of the gradient of Ep (error for the example
pattern p), pE∇ , with respect to the weights wkj, to determine the direction in which to

change the weights. Then the weights are adjusted so that the total error is reduced. Equation
2.17 calculates the error term Ep that is useful to determine how well the network is learning.
When the error is acceptably small for each of the training examples, the training can be

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 44

stopped. Figure 2.10 exemplifies a hypothetical error surface in weight space, its local and
global minima and the gradient descendent.

∑
=

=
M

k
pkpE

1

2

2

1 δ

Equation 2.17 � Error term

Ep

Zmin

Z

Ep

Ep

Figure 2.10 � Hypothetical error surface

The constant that assures the proportionality of the error adjustments steps is the
learning rate η . The larger this constant, the larger the changes in the weights. The chosen

learning rate shall be as large as possible without leading to oscillation. One way to avoid
oscillation is to include to the generalized delta rule a momentum term that has a parameter
α . Thereby Equation 2.18 gives the weight change for the connections among the output
and hidden neurons in the iteration time t.

())1()(−∆+=∆ twitw kjppjpkkjp αδη

Equation 2.18 � Weight change magnitude for connections among output and hidden neurons

 Equation 2.19 gives the update of the weight value for the connections among the

output neurons and the hidden neurons.

)1()()()1(−∆++=+ twitwtw kjppjpkkjkj αδη

Equation 2.19 � Weight update for connections among output and hidden neurons

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 45

Similarly, Equation 2.20 gives the weight change for the connections among the hidden
and the input neurons in the iteration time t.

())1()(−∆+=∆ twxtw jipipjjip αδη

Equation 2.20 � Weight change magnitude for connections among hidden and input neurons

Then Equation 2.21 gives the update of the weight value for the connections among
the hidden neurons and the input neurons.

)1()()()1(−∆++=+ twxtwtw jipipjjiji αδη

Equation 2.21 � Weight update for connections among hidden and input neurons

Once the network learning reaches a minimum, either local or global, the learning
stops. If it reaches a local minimum, the error produced at the network outputs can still be
unacceptably high. The solution then is to restart the network learning from scratch with new
weights for the connections. If this is still not the solution, the number of neurons on the
hidden layer can be improved, or the learning parameters learning rate and momentum can be
changed.

Important aspects to consider on the object model for the Backpropagation are:

• The input nodes just bypass the information. Usually this information is a
normalized set of values between 0 and 1, resulting from a pre-processing of
the input data.

• The hidden and the output neurons implement the Perceptron functionality
where the dot product is applied and a nonlinear function gives the neuron
activation.

• In the original model the connections among the neurons are feedforward. There
are no feedback connections and the network is fully connected.

• The number of input, hidden and output neurons is determined based on the
expert knowledge on the application domain.

• Even not having feedback connections the backward propagation of the error
terms is a computation in the reverse direction. In fact, the backward

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 46

computation is as important as the forward computation on this model, being
an important and interesting characteristic to be modeled.

The given Backpropagation equations presented here are from Freeman, 1992.

2.4.2 The Combinatorial Neural Model

The Combinatorial Neural Model (Machado and Rocha 1989, 1992; Machado et al.
1998) has been explored and developed during the past decade. Experiments with this model
have demonstrated that it is well suited for classification problems, with excellent results in
terms of accuracy (Leão and Rocha 1990; Feldens and Castilho 1997). The CNM integrates,
in a straightforward architecture, symbolic and non-symbolic knowledge. This model has
characteristics that are desirable in a classification system:

• Simplicity of neural learning - due to the neural network�s generalization
capacity.

• Explanation capacity � the model can map a neural network�s knowledge into a
symbolic representation.

• High-speed training - only one pass over the training examples is required.

• Immunity against some common neural network�s pitfalls � i.e. local optima,
plateau, etc.

• Incremental learning possibility - previously learned knowledge can be
improved with new cases.

• Flexible uncertainty handling � it can accept fuzzy inputs, probabilistic inputs,
etc, as inputs fall into the interval [0, 1].

The CNM includes mapping of previous knowledge to the neural network, training
algorithms, and pruning criteria, in order to extract only significant pieces of knowledge. The
detailed explanations on the possible learning algorithms are in (Machado et al. 1998). Here
are considered the Starter Reward and Punishment (SRP) and the Incremental Reward and
Punishment (IRP) learning algorithms, which are the original learning algorithms proposed for
the model. Those learning algorithms offer the possibility of building a CNM network based

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 47

on knowledge elicited from an expert (using SRP), and the possibility of refinement with new
examples the knowledge existing in the network (using IRP).

Learning Algorithm

?

Output Neurons (hypotheses)

Output Neurons (hypotheses)

Input Neurons (findings)

Combinatorial Neurons

Input Neurons (findings)

Figure 2.11 � The CNM network generation

The CNM is a 1-hidden layer, feed-forward network. It has particular characteristics in
the way the topology is constructed, in neurons, in the connections among neurons, and in its
training algorithm.

The domain knowledge is mapped to the network through evidences and hypotheses
(Figure 2.11). The evidence may have many distinct values that must be evaluated separately
by the neural network, called findings. The input layer represents the defined set of findings
(also called literals). A finding can be a categorical or numeric pattern feature. The categorical
feature can only take on a finite number of values while a numeric feature may take on any
value from a certain real domain. A categorical feature requires at most one input neuron for
each of the feature possible values. The state of each such neuron is either zero or one. A
numeric feature has to be partitioned in fuzzy sets where each set will correspond to an input
neuron and its state will correspond to the fuzzy set degree of membership. An example: if an
evidence age is modeled, it probably has findings that can be modeled as fuzzy intervals
(Kosko, 1992). The domain expert defines fuzzy sets for different ages (e.g. child, adolescent,
adult, senior) (Figure 2.12). Each fuzzy set defined will correspond to a finding and, as a
consequence, to a CNM input neuron.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 48

Fuzzy
Value

Fuzzy Set 0

1

youth adult

12 16 19

child
0.3

0.6
senior

50

Figure 2.12 - Fuzzy Sets

In this case each input value is in the [0,1] interval (fuzzy set membership functions),
indicating the pertinence of the training example to a certain concept, or the degree of
confidence. In the example of Figure 2.12, the age 19 will correspond to a zero membership
value for the child and senior fuzzy sets and to a 0.6 value for the adolescent fuzzy set and
0.3 to the adult fuzzy set.

The intermediate (combinatorial) layer is automatically generated. A neuron is added to
this layer for each possible combination of evidences, from order 1 to a maximum order,
given by the user.

The output layer corresponds to the possible classes (hypotheses) to which an example
could belong. Combinatorial neurons behave as conjunctions of findings that lead to a certain
class. For that reason, the pth combinatorial neuron propagates input values according to a
fuzzy AND operator (Equation 2.22), taking as its output the minimum value received by the
inputs.

)(min iip
p

xs
Ii ∈

Equation 2.22 � Fuzzy AND

In Equation 2.22 above, },...,1{ nI p ⊆ indicates the appropriate input neurons, and
either iiip xxs =)(or iiip xxs −=1)((fuzzy negation). In the first case the synapse (i,p) is

called excitatory and in the later case inhibitory.

Output neurons group the classification hypotheses implementing a fuzzy OR operator
(Equation 2.23), propagating the maximum value received by its inputs.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 49

)(minmax
1

iip
p

p
mp

xsw
Ii ∈≤≤

Equation 2.23 � Fuzzy OR

In Equation 2.23 above, m indicates the number of output neurons, and]1,0[∈pw is

the weight associated with the connection from the pth combinatorial neuron to the output
neuron.

The weights modifications are determined by using a supervised algorithm which
attempts to minimize the mean square error (Equation 2.24) incurred by the network when
presented with a set of examples.

∑
∈

−=
Ee

eywey
E

wmse 2)](ˆ),([
1

)(

Equation 2.24 � Mean Square Error calculation for the new weight set of values

In Equation 2.24 above, w is the weight vector of a CNM network, and the learning is
done using a set of examples nE]1,0[⊂ . For an example Ee ∈ , let)(ˆ ey denote the desired

output, and y(e,w) the output generated by the network with the weight vector w.

The Incremental Reward and Punishment (IRP) and the Starter Reward and
Punishment (SRP) learning algorithms are based on the concept of rewards and punishments.
The connections between neurons (synapses) have weights and also pairs of accumulators for
punishment (Pp) and reward (Rp). Before the training process, in absence of previous
knowledge, all weights are set to one and all accumulators to zero. During the training, as
each example is presented and propagated, all links that led to the proper classification have
their reward accumulators incremented. Similarly, misclassifications increment the
punishment accumulators of the path that led to wrong outputs. Weights remain unchanged
during the training process, only accumulators are incremented.

The training process is generally done in one pass over the training examples. At the
end of this sequential pass, the connections that had more punishments than rewards are
pruned. The remaining connections have their weights changed using the accumulators.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 50

2.4.2.1 The IRP learning

The IRP is used when the CNM neural network already exists and the goal is to add
new knowledge to the network by learning new examples. In the case of the IRP, the learning
proceeds as following.

If for a weight vector w, an example Ee ∈ yields y(e,w) >)(ˆ ey , then every pathway p

(connection among a combinatorial neuron and an output neuron), in the network is
rewarded proportionally to:

• The response of the network, y(e,w);

• The absolute value of the error,)(ˆ),(eywey − ;

• The signal injected by p into the output neuron,))((min exsw iip
p

p
Ii ∈

.

On the other hand, when y(e,w) <)(ˆ ey each pathway of the network is punished in the

same way.

At the end of each learning iteration, the synapses with the Rp < Pp are deleted
(pruned), and for the others, the accumulators are used to recalculate the value of wp. The
remaining pathways with Rp > 0 and Pp = 0 (pathognomonic pathways) have their weights
updated based on Equation 2.25:

)(max
)1(

1

qq

p
p PR

R
ttw

mq

−
−+=

≤≤

Equation 2.25 � Pathognomonic pathway weight update

The constant t is an arbitrary acceptance threshold and (]1,0∈t . The other remaining

pathways (ordinary pathways), have their weights updated based on Equation 2.26:

)(max

1

qq

pp
p PR

PR
w

mq

−
−

=

≤≤

Equation 2.26 � Ordinary pathway weight update

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 51

At the end of the iteration, the values of Rp and Pp are passed on to the next iteration,
enabling the incremental learning capability.

2.4.2.2 The SRP learning

The SRP learning applies the same general principle of rewards and punishments of the
IRP learning in a one-iteration procedure. Before applying the SRP, the accumulators are set
to zero and the weights are set to one. All the data examples are then applied to the network
in a one-iteration procedure promoting the changes of the reward and punishment
accumulators. After applying all examples, the same weight updates used on IRP are applied:
the non-rewarded pathways are pruned and the others have their weights modified by
Equations 2.25 and 2.26 above. The SRP is the starting point for the CNM learning. After its
application, the IRP can be used to increment the CNM knowledge.

Important aspects to consider on the object model for the CNM are:

• The input neurons just bypass the information. Usually this information is
normalized values among 0 and 1, resulting from a pre-processing of the input
data.

• The combinatorial neurons implement the fuzzy AND function and the output
neurons operate the fuzzy OR function.

• The connections among the neurons are feedforward, there are no feedback
connections and the network is not fully connected.

• The number of input and output neurons is determined based on the domain
knowledge the expert has, and the combinatorial neurons are created as the
possible combinations, from zero to a given order number (typically 3), of the
input neurons. The generation of the combinatorial layer may demand
enormous memory footprint to be able to generate the neurons and synapses to
all necessary combinations.

• The CNM synapses have reward and punishment accumulators that are used to
decide whether the synapse must be pruned or not, and also to recalculate the
new value for the synaptic weight.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 52

2.4.3 The Self-Organizing Feature Maps

This kind of neural network is inspired on the brain�s cortical structure. The different
sensory inputs like visual or acoustic are mapped in different areas of the cerebral cortex in a
topologically ordered manner. The Kohonen Self-Organizing Feature Map (SOM) (Kohonen,
1990) was built to operate in an analog way. The network is based on a usually two-
dimensional lattice structure. The learning is competitive where the neurons are selectively
tuned to various input patterns (vectors) or classes. The different input features force the
locations of the winning neurons to be ordered in respect to each other in a meaningful way,
so that the different features are mapped to different regions of the lattice. The spatial
locations of the neurons correspond to the features given in the input patterns.

An important characteristic of the SOM neural network is the presence of lateral
feedback in the learning process. The lateral feedback is a special form of feedback that is
dependent on lateral distance from the point of its application. The lattice network has
�imaginary� lateral connections among the neurons. The neuron on the map that best fits the
feature of the pattern being presented to the network is considered the network winner. The
neurons that are located around the winner neuron shall receive excitatory or inhibitory
effects depending on the distance of the winner neuron through the lateral connections. This
effect is due to the called bubble activity the network tends to have by concentrating the
electrical activity into local clusters. Exciting or inhibiting the neurons around the winner
forms the feature clusters. Typically the Gaussian function shown in Figure 2.3(e) (Activation
functions) is used to describe the lateral feedback.

The Kohonen SOM neural model basic functionality can be described as follows:

• The input of the network can be of any dimensionality while a one or two-
dimensional lattice of neurons is responsible for computing simple discriminant
functions of the input.

• A mechanism compares these discriminant functions and selects the neuron
with the largest discriminant function value.

• The selected neuron and its neighbors are activated simultaneously.

• An adaptive function increases the discriminant function values of the selected
neurons in relation to the input signal.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 53

The Kohonen SOM neural network structure can be seen in Figure 2.8 (Lattice
network) that shows the lattice architecture or in Figure 2.13 below. Figure 2.13 tries to show
that the SOM network is fully connected, all neurons on the input layer are connected to all
neurons on the output (lattice) layer. It shows also the connections among the neurons on
the output layer that will be responsible for the lateral feedback.

The number of input neurons is determined by the size of the input vector. The input
vector represents the data pattern and can be of any dimensionality. The output map of
neurons may have the dimensionality augmented to three, but the two-dimensional map is
the most frequently used.

The first step on the SOM learning is to find the winner neuron or the neuron that best
matches a certain criterion. The winner neuron will determine the location of the activation
bubble on the map. The network connections are initialized with random values so that no
representation is given on the map at the beginning.

...

Two-dimensional lattice of output neurons

Connections among input and output neurons

Input neurons

Figure 2.13 � Kohonen SOM

When the input pattern is applied to the SOM input, the values are propagated to all
neurons on the lattice layer. The lattice layer can compute the arriving input signals by simply
calculating the inner product to all output neurons. Considering that the threshold is the same
for all the output neurons, the output neuron that produces the largest inner product is the
one that best fits to the pattern and is selected as the winner. A second form of best-
matching is to use the minimum Euclidean distance between the vectors formed by the input
signal and the weights at the arriving connections of each output neuron. In this case, the
input vector and the network weights shall be normalized to constant Euclidean norm

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 54

(length). Equation 2.27 shows how to calculate the winner neuron i for a given input vector x
using the minimum Euclidean distance.

jj wxxi −= minarg)(

Equation 2.27 � Winner neuron calculation using the minimum Euclidean distance

In Equation 2.27 above, x is the learning vector and wj is the vector formed by the
connections weights among the input nodes and the output neuron with index j.

The Euclidean distance for a given output neuron with index j can be given by
Equation 2.28 below, where p is the number of input neurons, wj,i is the weight of the
connection among the jth output neurons and the ith input neuron, and xi is the input value
applied to the ith input neuron.

∑
=

−=−
p

i
ijij wxwx

1

2
,)(

Equation 2.28 � Euclidean distance

The topology of the lattice determines the neurons that are the neighbors of the winner
neuron i. The weights of the connections to the winner neuron are to be rewarded by being
this neuron the best matching to the given input. The neighbor neurons also shall receive
some sort of reward forming the activation bubble together with the winner. By the lateral
feedback connections, the neighbor neurons will be adapted to the given input. Let the lateral
distance of the neuron j from the winning neuron i be denoted by dj,i. The amplitude of the
topological neighborhood centered on the winner neuron i is denoted by ij ,π .

Typically the neighborhood function is given by the Gaussian-type function shown in
Equation 2.29.











−=

2

2
,

, 2
exp

σ
π ij

ij

d

Equation 2.29 � Gaussian-type function for the topological neighborhood

The parameter σ at Equation 2.29 is the efective width (variance) of the topological
neighborhood. The topological neighborhood ij ,π is maximum at the winning neuron (dj,i =

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 55

0). The amplitude of the topological neighborhood decreases with increasing lateral distance
dj,i , decaying to zero for ∞→ijd , .

The update of the synaptic weight vector wj of neuron j at lateral distance dj,i from the
winning neuron i(x) is given by Equation 2.30 below, where n denotes the discrete time and η

is the learning-rate parameter of the algorithm.

)]()()[()()()1()(, nwnxnnnwnw jxijjj −+=+ πη

Equation 2.30 � Weight update function

The time-dependent learning-rate parameter η(n) used to update the synaptic weight
vector wj(n) shall be time-varying. During the first 1000 iterations it shall assume a value near
to the unity and be decreased gradually until a value above 0.1. The width of the topological
neighborhood σ(n) shall also decrease slowly during the learning process. Typically, the
function used for the calculation of both parameters is the exponential decay, described at
Equations 2.31 and 2.32.









−=

1
0 exp)(

τ
ηη n

n

Equation 2.31 � Learning-rate parameter update









−=

2
0 exp)(

τ
σσ n

n

Equation 2.32 � Topological neighborhood parameter update

In Equations 2.31 and 2.32 above, the values σ0 and η0 are respective values of σ(n)
and η(n) at the initiation of the algorithm (n=0). The values τ1 and τ2 are the time constants
for the parameters η and σ respectively. Equations 2.31 and 2.32 shall be used only during
the ordering phase, the first 1000 iterations or so, after that a small value shall be used for
many iterations.

Important aspects to consider on the object model for the SOM are:

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 56

• The input nodes just bypass the information. Usually this information is
normalized values among 0 and 1, resulting from a pre-processing of the input
data.

• The output neurons implement the Euclidean distance to find out its activation
value.

• The connections among the neurons of the input and output layers are
feedforward and fully connected, there are feedback connections among the
neurons of the output layer. The lateral feedback is a novel characteristic in
relation to the previous models seen so far. There is no hidden layer.

• The number of input neurons is determined by the expert based on the domain
to apply the model. The number of output neurons is also determined
empirically and is typically a two-dimensional map.

• The activation bubbles form the chunks of knowledge about the problem being
treated by the network. Each chunk tends to map an input feature.

The given SOM equations presented here are from the Haykin, 1994.

2.4.4 The Adaptive Resonance Theory

The Adaptive Resonance Theory (ART) was proposed by (Grossberg, 1976;
Grossberg, 1987). When proposing the ART model, Grossberg attempted to solve what he
called the stability-plasticity dilemma. This dilemma is concerned with the neural network
capacities of generalization (stability) and discrimination (plasticity). The stability property is
responsible for the neural network capability of grouping similar patterns in the same
category. The plasticity is the network capacity of creating new categories when new patterns
are presented. The dilemma lives in the difficulty of having a neural model that is able to
develop the two capabilities at the same time. It means the network shall: remain adaptive
(plastic) in response to relevant input, yet remain stable in response to irrelevant input; know
to switch between its plastic and its stable modes; retain its previously learned information
while continuing to learn new information.

Regarding the stability and plasticity properties of the ART model Grossberg stated:
�An ART system can adaptively switch between its stable and plastic modes. It is capable of
plasticity in order to learn about significant new events, yet it can also remain stable in

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 57

response to irrelevant events. In order to make this distinction an ART system is sensitive to
novelty. It is capable, without a teacher, of distinguishing between familiar and unfamiliar
events, as well as between expected and unexpected events.� (Grossberg, 1987)

Grossberg introduced a feedback mechanism between the competitive and the input
layers of the network to cope with the stability-plasticity dilemma. This feedback mechanism
controls the learning in a way that new information is learned without destroying old
information. Several models were derived from the Adaptive Resonance Theory (Grossberg,
1987; Carpenter and Grossberg, 1987; Carpenter and Grossberg, 1992):

• ART1 � Is characterized by using only binary input.

• ART2 � Is able to process analog input.

• ART3 � Considers the action of the neurotransmitters on its synaptic
mechanisms.

• Fuzzy ART � Implements fuzzy concepts in ART1 architecture.

• ARTMAP � Predictive architecture based on two ART modules.

• Fuzzy ARTMAP - Predictive architecture based on two Fuzzy ART modules.

The name �resonant� on the model comes from physics where the resonance occurs
when a small-amplitude vibration of the proper frequency causes a large-amplitude vibration
in a mechanical or electrical system. In the ART network, the signals reverberate back and
forth between neurons of the input and competitive layers. In this process, the network tries
to stabilize by developing the proper pattern. If it does so, a stable oscillation ensues, which is
the neural network equivalent of resonance. During the resonant period the learning or
adaptation occurs. Before the network has achieved the resonant state no learning occurs.

If a completely new pattern is presented to the ART network, it first tries to find on its
internal representations the matching for the pattern. If the network does not find one, it
enters in a resonant state in order to develop a new internal representation for the pattern. If
the network has previously learned to recognize a pattern, then it will quickly enter in
resonance and will reinforce the previously created internal representation.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 58

In the ART model, two subsystems interact in the processing of the input patterns: the
attention subsystem and the orientation subsystem. The attention subsystem is responsible
for the processing of familiar input patterns, establishing responses and precise internal
representations for those patterns. The orientation subsystem copes with the unknown
patterns, resetting the attention subsystem when such patterns are presented to the network.

An important role performed by the ART systems is to distinguish in a certain set of
patterns what is signal and what is noise. To turn this possible, the context of the patterns
was considered on the ART definition. Certain characteristics can be considered as noise
when presented in certain patterns and considered as important signal feature for other
patterns. The relevant information that shall be distinguished is called critical feature patterns, or
prototypes and represent invariants of the set of all experienced input patterns. As the
learning process takes place, new equilibrium points are formed as the system discovers and
learns the critical features. The learned features are stabilized by internal mechanisms that
internally control the learned features and avoid possible sources of system instability.

Next, one model was picked from the ART family to be implemented in this work. The
fourth model to be implemented is the ART1. The implementation of this ART model shall
prove the capacity of the designed ANN framework to cope with feedback connections.
Having this first ART model implemented, it is then easier to go for the implementation of
the several other models of the ART family.

2.4.4.1 The ART1

In the ART architecture (Figure 2.14), two distinct processes occur when an input
pattern is applied. The bottom-up process, also known as the adaptive filter or process of
contrast enhancement, that produces the Y pattern, and the top-down process, that realizes a
similarity operation to produce the pattern X*.

Given a set of input patterns, a certain pattern belonging to this set is represented by I.
When pattern I enters F1 (attention subsystem), it is then called pattern X (I and X are then
identical). The neurons activated by the pattern X in F1 generate output signals that flow
through the connections F1→ F2 (long-term-memory). This process produces pattern Y on
layer F2. This pattern Y is the result of a winner-take-all process where only one neuron in F2
can be the winner (the one with bigger activation). Only the winner neuron produces the
value 1 on its output, the other neurons on the same layer produce 0. Here the bottom-up
process finishes and the top-down process starts.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 59

STM

. . .�

F1

LTM

STM

. . .�
Y/Y*

F2

X*

U

V+

+

+

+ + +

-

+
-

+

+ +

Input Pattern I

S

T

X

Attention Subsystem Orientation
Subsystem

Figure 2.14 � ART1 Architecture

From the winner neuron a top-down pattern is produced through the F2→ F1
connections (feedback connections). This new signal is called pattern V. Now, there are two
stimulation sources for the input layer F1: the input pattern I and the feedback pattern V.
Together they give origin on F1 to pattern X* that is typically different from pattern X.
Pattern X* indicates the similarity level between the input pattern and the stored prototype
on the connection among layers F2 and F1. The similarity process among those patterns can
be simply the function AND (∩), or another similarity measure.

It is then necessary to decide whether the input pattern must be stabilized on the
winner neuron or another neuron should be used. To verify the level of similarity represented
on X* it is necessary to define a rule that considers both X* and I. It is possible to consider
several different rules for accepting or rejecting the stabilization. This rule is called the reset rule
and Inequality 2.33 commonly defines it.

ρ≥=
∩

I

X

I

IV *

Inequality 2.33 � Reset rule

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 60

In the Inequality 2.33, ρ is the vigilance parameter that can assume values between 0 and 1,
|X*| is the number of ones in the pattern X*, and | I | is the number of ones in the pattern
I. If the result of this equation is true, the winner neuron is considered stable. Otherwise, it
will not be considered by the orientation subsystem A, and the search for a stable pattern will
continue. If no neuron is accepted as stable, then a neuron that is not used to any input
pattern is then selected to learn this new input pattern. After choosing a stable pattern, the
network learns the input pattern by adaptation of the bottom-up and top-down connections.

The 2/3 rule

Figure 2.15 shows the application of the 2/3 rule. There are situations when the
neurons on the F1 layer must be deactivated, i.e., not producing output signals. For example,
the neurons on F1 do not have to generate outputs when excited only by the pattern V, but
must be able to generate output when excited by the input pattern I. A mechanism called gain
control (B) is implemented on the network to control such a situation. When F2 is active,
excitatory signals to F1 are generated (pattern be V) and at the same time the gain control is
inhibited (Figure 2.15(a)). The rule that controls layer F1 is called 2/3 rule and says that: two
of the three signal sources available in F1 (input pattern I, top-down pattern V, and the gain
control pattern B), are necessary to activate the F1 layer neurons producing an output
pattern. These outputs from the neurons on the F1 layer are called supraliminal signals. During
the button-up process, F1 receives an input that is the pattern I and an excitatory signal from
the gain control, turning possible then the generation of the supraliminal signals (Figure
2.15(b)). During the similarity process of the top-down and bottom-up patterns, also
supraliminal signals are generated (Figure 2.15(c)). Neurons that receive one bottom-up or
one top-down input, not both, cannot generate the supraliminal signals.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 61

+
F1B

(b)

F2

+
-

F1B

(c)

F2

+
-

F1B

(a)

F2

+
+

+
+

Figure 2.15 � The 2/3 rule

Learning on ART1

There are two ways of doing the learning on ART1: the slow and the fast learning. The
slow learning allows for only a small amount of the input pattern to be represented by the
weights. After repetitive presentations of the entire set of learning examples, the most
important features of each pattern are captured by the LTM (long term memory). This form
of learning is well suited to problems with high dimensionality, subject to learning sets with
huge amounts of noise. The fast learning quickly encodes the input pattern features on the
weights. This encoding typically is done in a one-shot-learning, which means, each input
pattern of the learning set is presented to the network only once and the network is able to
learn the pattern features. The fast learning is recommended to learning sets free of noise and
when the learning must be done immediately.

Slow learning

The equations for the slow learning at the LTM and the STM (short-term-memory)
described in (Carpenter and Grossberg, 1887) are as follows:

STM Equations

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 62

Equation 2.34 gives dynamic equation for calculating the activation of the STM xk of
any neuron vk in F1 and F2.

−+ +−−+−= kkkkkk JCxBJAxxx
dt

d
)()1(ε

Equation 2.34 � STM activation

In Equation 2.34 above, +
kJ is the total excitatory input to vk ,

−
kJ is the total inhibitory

input to vk , and all parameters are positive. Parameter A controls the bottom-up and top-
down signals, while B and C regulate the gain control. If A > 0 and C > 0, then the STM
activity xk(t) remains within the finite interval [-BC-1, A-1], regardless of the values of +

kJ and
−
kJ .

The neurons on F1 are called vi, where i = 1,2,�M. The F2 neurons are called vj, where j
= M+1,M+2,�N. Thus Equation 2.34 above turns to be Equation 2.35 below for the
neurons on the F1:

−+ +−−+−= iiiiii JxCBJxAxx
dt

d
)()1(111ε

Equation 2.35 � STM for neurons on the F1

Similarly, Equation 2.34 above turns to be Equation 2.36 below for the neurons on the
F2:

−+ +−−+−= jjjjjj JxCBJxAxx
dt

d
)()1(222ε

Equation 2.36 � STM for neurons on the F2

For a discrete calculation of F1 an input vector Ii is applied and the activities are
calculated according to Equation 2.37 below:

111
1)(1 CBIA

I
x

i

i
i +++
=

Equation 2.37 � Activities for the neurons on the F1

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 63

The +
kJ input of the ith neuron vi in F1 is a sum of the bottom-up input Ii and the top-

down input pattern Vi , represented by Equation 2.38 below:

iii VIJ +=+

Equation 2.38 � F1 input

The top-down input pattern Vi is given by Equation 2.39 below:

∑=
j

jiji zxfDV)(1

Equation 2.39 � Top-down input pattern Vi

The f(x) on Equation 2.38 above is the signal generated by activity xj of vj , and zji is the
LTM trace in the top-down connection from vj of vi . In the notation of Figure 2.14 (ART1
Architecture), the input pattern I = (I1, I2,�,IM), the signal pattern U = (f(xM+1), f(xM+2),�,
f(xN)), and the template pattern V = (V1,V2,�,VM).

The inhibitory input −
iJ governs the attentional gain control signal and is calculated by

Equation 2.40:

∑=−

j
ji xfJ)(

Equation 2.40 � F1 attentional gain control

Thus −
iJ = 0 if and only if F2 is inactive. When F2 is active, −

iJ > 0 and hence term
−
iJ in Equation 2.35 (STM for neurons on the F1) has a nonspecific inhibitory effect on all

the STM activities xj of F1.

The inputs and parameters of STM activities in F2 are chosen so that the F2 neuron that
receives the largest input from F1 wins the competition for the STM activity (winner-take-all).

The inputs +
jJ and −

jJ to the F2 neuron vj have the form given in Equations 2.41 and

2.42 respectively:

jjj TxgJ +=+)(

Equation 2.41 � F2 input

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 64

∑
≠

− =
jk

kj xgJ)(

Equation 2.42 � F2 attentional gain control

Input +
jJ adds a positive feedback signal g(xj) from vj to itself to the bottom-up

adaptive filter input Tj given by Equation 2.43 below:

∑=
i

ijij zxhDT)(2

Equation 2.43 � Bottom-up adaptive filter input Tj

The h(xj) is the signal emitted by the F1 neuron vi and zij is the LTM trace in the
connection from vi to vj . Input −

jJ adds up negative feedback signals g(xk) from all the other

nodes in F2.

In the notation of Figure 2.14 (ART1 Architecture), the output pattern S = (h(x1),
h(x2),�, h(xM)), and the input pattern T = (TM+1 ,TM+2,�, TN).

LTM Equations

The LTM value for the bottom-up connection from vi and vj follows Equation 2.44:

])()[(1 ijijijij zExhxfKz
dt

d −=

Equation 2.44 � LTM for bottom-up connections

Similarly, the LTM value for the top-down connection from vj and vi follows Equation
2.45:

]) ()[(2 ji ji i j ji z E x h x f K z

dt

d − =

Equation 2.45 � LTM for top-down connections

On Equations 2.44 and 2.45 above, K1 and K2 are positive constants that control the
learning rate, Eij and Eji are positive constants that control the decay rule (see Carpenter and

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 65

Grossberg, 1987), zij is the value for the connection from vj to vj , and zji is the value for the
connection from vj to vi. The threshold function h(xi) applied in the F1 neurons is the sigmoid.
The term f(xj) is a postsynaptic sampling, or learning, signal because f(xj) = 0 implies

0=ijz
dt

d . The term f(xj) is also the output signals of vj to connections from vj to F1 , as in

Equation 2.39 (Top-down input pattern Vi).

For the top-down connection, the simplest choice for the values of K2 and Eji is to
make both equal to 1. For the bottom-up connection a more complex choice of determining
Eij is made. This choice considers the Weber Law Rule (Carpenter and Grossberg, 1987).
This rule requires that positive bottom-up LTM values learned during the encoding of an F1
pattern X, with a smaller number | X | of active neurons, be larger than the LTM values
learned during the encoding of an F1 pattern with a larger number of active nodes. At least
those values shall be similar. Thus, the Weber rule ensures that input patterns I1 that are
subsets of other input patterns I2 activate its own features.

Fast Learning

For the fast learning to work properly, the bottom-up and top-down connections must
be properly initialized. It is necessary to ensure that the encoded patterns are alwa2ys
properly accessed. The bottom-up connections zij from vi to vj shall follow initialization
conditions called Direct Access Inequality, defined in Inequality 2.46:

)1(
0

nL

L
zij +−

<<

Inequality 2.46 � Direct Access Inequality

In Inequality 2.46 above, the constant L is bigger than 1 and typically is equal to 2, and
n is the number of neurons in F1. This value is very critic because if it is too large, the
network may allocate all the neurons of the F2 for a unique input pattern.

The initial conditions for the values of the top-down connections zji from vj to vi shall
follow the Template Learning Inequality defined in Inequality 2.47 below:

1
1

1

1 ≤<
−

jiZ
D

B

Inequality 2.47 � Template Learning Inequality

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 66

It is suggested that zji be initialized with 1.

The following Equation 2.48 gives the codification of the LTM bottom-up
connections:













=

= =

= =
+ −

=

0

1 0 0

1
|) | 1 (

j ij

j i

j i

ij
v if z

v and v if

v v if
X L

L

z

Equation 2.48 � Bottom-up codification

In Equation 2.48 above, |X| is the number of components in vector X. There is no
modification in zij when vj in F2 is inactive.

Similarly, the following Equation 2.49 gives the codification of the LTM top-down
connections:









=

= =

= =

=

0

1 0 0

1 1

j ji

j i

j i

ji
v if z

v and v if

v v if

z

Equation 2.49 � Top-down codification

There is no modification in zji when vj in F2 is inactive.

Important aspects to consider on the object model for the ART are the following:

• The input nodes do not simple bypass the information as in the models seen so
far. The input nodes have to cope with feedback information coming from the
competitive layer.

• There are special equations for the processing of the neurons of both input and
competitive layers.

• There are feedforward and feedback connections among neurons of the input
and competitive layers. The layers are fully connected. The feedforward and
feedback connections process the signals traveling on them.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 67

• There is lateral feedback connection among the neurons of the competitive
layer similarly to what happens to the competitive layer of the SOM model.

• The number of input neurons is determined by the expert based on the domain
to apply the model. The number of output neurons is also determined
empirically.

• The input values can be binary, analog or even fuzzy depending on the ART
model implemented.

• There are connections among the neurons of the input and competitive layers,
and also connections between the layers and the control mechanisms of the
network that can be seen as special neurons drawn in Figure 2.14 (ART1
Architecture).

2.5 Software Engineering issues

This section introduces Software Engineering concepts that are relevant to the realm of
the thesis. The goal here is not to extensively discuss these concepts, but only to put them
together in a way that makes clear the engineering principles that form the basis of this work.

2.5.1 Software Quality

Software quality is the final objective of software engineering. A high quality software
system is more stable, has fewer bugs, is easier to understand, maintain and extend, and
attend user�s needs in functional and efficiency terms. (Pree, 1995)

Software quality may be achieved through careful planning, design, implementation and
testing. Each of these phases is expensive and time-consuming. So how can increasingly
complex software be delivered in time and with the expected quality? The answer is: through
reuse of well-defined, well-designed and well-tested units of software.

In order to achieve effective software reuse, the software must have some capability to
adapt to a variety of situations. This aspect of software flexibility is one of the keys to high
quality software. Flexible software is not only more reusable, it is also more easily maintained
and extended as it was built with change in mind. Programming including flexible points in

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 68

the software can sometimes increase the costs of initial development, but often this cost is
amortized if the system needs to be adapted or extended.

2.5.2 Flexible software

To create a flexible piece of software, one must be able to spot which parts of the
system are more likely to change, and which technique can be used more effectively in that
situation. There are a variety of techniques. Some of them can be applied to different
languages and methodologies, some only work in specific environments (e.g. object-oriented
frameworks). This section sketches a selection of these techniques, with emphasis on the
framework-based ones.

2.5.2.1 Flexibility based on data

The Von Neumann model, which most computing systems follow nowadays, states
that programs and data share the same memory space. That view of the program as data leads
to the duality of programs and data that �means that one program can process another as
input. The output data could be a transformed program� (Pree, 1991). Using the duality
concept, it is possible to make flexible software whose behavior can change based on the
inputs that the software receives. This kind of flexibility requires no recompilation, no access
to the software source code and can be implemented in virtually any language. Two ways of
data-based flexibility can be cited:

Resources

The data that will be interpreted is stored in resource files. The kind of customization
that can be done in this way ranges from simple data entry for a calculation program, up to
complex workflow definition or graphic user interface customizations. In the latter cases, the
resource files are often edited using special customization tools or editors.

For instance, a typical use of resource bundles is the internationalization of the GUI.
The different words and sentences that form the GUI are stored in different resource
bundles and loaded at runtime in order to build the user interface according to the user�s
preferences, in this case according to the particular language.

Scripting languages

Another kind of program that can be stored as data is a script. Although a script file
can be viewed as a kind of resource file, it deserves a distinction because of some unique

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 69

characteristics. An explicit interpreter module that is not strongly coupled with the rest of the
application usually processes a script. A script language is the set of rules that describe
whether a resource is valid, and what actions are to be taken for each command the script
contains.

An example of scripting usage is the JavaScript that has been broadly used to bring
interactivity to the Web application. It is used for creating live online applications that link
together objects and resources on both clients and servers. JavaScript was designed for use by
HTML page authors and enterprise application developers to dynamically script the behavior
of objects running on either the client or the server.
(http://java.sun.com/pr/1995/12/pr951204-03.html)

Microsoft�s counterpart is VBScript, which offers active scripting to various
environments, such as Web client scripting in Microsoft Internet Explorer and Web server
scripting in Microsoft Internet Information Service.
(http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/script56/html/vbswhat.asp)

2.5.2.2 State of the art programming concepts

Some of the techniques to achieve reusability and flexibility are based on language or
paradigm specific features. This section explains some of them and shows some of their
inherent advantages and disadvantages.

Class Libraries

Class libraries are probably the most common technique for making reuse happen, as
virtually every object-oriented language has one or more. Their main goal is re-usability, so
the flexibility of each subset of classes must be maximized. Ordinary class libraries don�t
provide any application structure. An example is the Java language API with libraries such as:
swing (GUI), io, lang, math, etc.

Components

Szyperski (1998) defined software component as:

�A unit of composition with contractually specified interfaces and explicit context
dependencies only. A software component can be deployed independently and is subject to
composition by third parties.�

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 70

The definition brings the attention to the core properties of a component such as:
independence, contractual interfaces, composition with third-parties and deployment. The
component shall be a unit of independent deployment. They are built to be used by different
systems that need the functionality implemented by the component. A component shall not
be dependent on other components or environments. Components are called units because
they cannot be deployed partially and the third party is not expected to have access to a
component�s details.

The component contractual interface allows its composition with third-party
components given that they match and that the interfaces are well documented. A
component has to encapsulate its implementation and interact with the environment through
well-defined interfaces.

Therefore the component properties are (Szyperski, 1998):

• The component is a unit of independent deployment.

• The component is a unit of third-party composition.

• The component has no persistent state.

Components can correspond to objects and their classes. However, there is no need for
a component to be a class or consist of classes. The fact that components are used in
software development does not directly imply that the resulting software is of high quality or
has higher flexibility. The whole architecture must be consistent and the components must
themselves have a sound structure and be flexible enough to attend the needs of that
particular application. Like class libraries, the components tend to provide flexible, easy to
use software, without imposing any specific application structure. The main advantage over
simple class libraries is the higher level of encapsulation that is achieved.

Components require a standard for connecting them. There are currently three
standards: CORBA, COM and JavaBeans. Each of these standards has its specific interfaces,
services, platform dependencies, etc. For an extensive study and comparison the book by
Szyperski (1998) is recommended.

Frameworks

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 71

A component that can fit the definition of well-defined, well-designed and well-tested
units of software is the framework. Following, (Gamma et al. 1995) defined a framework as �a
set of cooperating classes that make up a reusable design for a specific class of software�.
That definition regards frameworks as large pieces of software, with as many responsibilities
as the whole application class for which it was built may have. Defining frameworks as above
limits their overall usability, because it is unlikely that two or more large, complex sets of
classes can be combined together without a significant effort to bridge them.

A less constrict and perhaps more useful definition can be found at (Wirfs-Brock and
Johnson, 1990). It states, �A framework is a collection of abstract and concrete classes and
the interface between them, is the design for a subsystem�. This definition allows more reuse
by allowing different modules, each of which is responsible for a related set of tasks.

But also this concept has some limitations when they have to be combined, as the
designs of the different subsystems may not be fully compatible. Often a framework assumes
that it has the main control of an application. Two or more frameworks making this
assumption are difficult to combine without breaking their integrity. (Pree and Koskimies,
1999)

Frameworks predefine an architecture for the application, so they encapsulate part of
the design, as well as part of the code. Frameworks also cause the code to suffer an
�inversion of control�, as the framework is responsible for the control flow instead of the
application. Examples of framework are: ET++ application framework (Weinand et. al.
1989) and many of the Java libraries.

White-box frameworks

Socalled White-box frameworks consist of a collection of incomplete (abstract) classes,
that is, classes that contain methods without meaningful default implementations (Pree,
1996). To adapt the framework, the application developer extends those incomplete classes,
implementing appropriate methods to satisfy the application needs. As a direct consequence,
the user of the framework must be aware of its workings and structure. Figure 2.16 shows the
creation of a subclass A1 in order to add behavior not implemented in the superclass A. The
new behavior is added by overriding the necessary methods of the superclass A.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 72

...

...

Framework
Adaptation

Framework
Classes

A

A1

B

B1 B2

Figure 2.16 - Sample framework class hierarchy. (Pree, 1996)

Black-box frameworks

Black-box frameworks are similar to white-box frameworks, with the exception that
they offer several ready-to-use components to be combined, instead of demanding them to
be created through extension. Modifications are accomplished by composition, not by
programming. Black-box frameworks are easier to reuse, if they have the right components.
Most of the time, though, frameworks have many white-box aspects in the beginning and
move towards black-box, as some often used components are incorporated.

The example below, picked from Pree (1996), shows the adaptation of a framework by
composition of white-box and black-box components. In the framework class hierarchy in
Figure 2.16, class B already has two subclasses B1 and B2 that provide default
implementations of B�s abstract method. Suppose that the framework components interacted
as depicted in Figure 2.17(a), a programmer would adapt this framework, for example, by
instantiating classes A1 and B2 and plugging in the corresponding objects (see Figure
2.17(b)). In the case of class B, the framework provides ready-to-use subclasses; in the case of
class A the programmer has to subclass A first.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 73

(a) (b)

 A

 B

B2

 A1

Figure 2.17 - Framework (a) before and (b) after specialization by composition. (Pree, 1996)

Hot Spots

Hot spots are the �aspects of an application domain that have to be kept flexible�
(Pree, 1996 and 1997). To find the hot spots is a priority when designing a framework, as it is
not cost-effective to make the framework flexible in every conceivable way. The complexity
of keeping the framework exceedingly flexible also makes the framework harder to reuse and
maintain. The design using hot spots is explained further in Section 2.5.4.

Framelets

A framelet is simply a small framework. According to (Pree and Koskimies, 1999), �In
contrast to a conventional framework, a framelet is small in size (< 10 classes), does not
assume main control of an application and has a clearly defined simple interface.� So that
framelets represent a way for modularizing frameworks.

Framelets, like classes in a class library, can be arranged into families, like a family of
framelets that processes documents. There may be a framelet responsible for managing
payment notices; another framelet that handles invoices; another that treats purchase orders,
etc.

2.5.3 Framework construction patterns

It is necessary to know how to construct frameworks that can be reused in a variety of
domains. So that it is important to understand the essential framework construction
principles. Socalled design patterns apply the construction principles in various situations.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 74

The implementation of frameworks relies on �abstract classes� and �abstract
coupling�. Abstract class is a class that contains one or more methods without a meaningful
implementation. These methods are the socalled hooks that the application-defined
components must implement, through extension of the abstract class, to provide their
application-specific code. As the application-specific class extends the abstract class, it
automatically inherits all method signatures. This relationship is called �abstract coupling�,
and is the basis for both white-box and black-box design. Abstract coupling allows the
substitution of the base class for any other class that contains the expected method
signatures, without any change in the code that exercises that base class.

2.5.3.1 Hook combination patterns

As was shown before, the main objective of using hook-template pairs is to provide
flexibility. The code for the hook and template may be in the same class or in different
classes. In this subsection, the class containing the code for the template method is called T,
and the class containing the code for the hook method is called H. (Pree, 1995)

Unification

When the template and hook methods are unified in the same class, the combination
principle is called �Unification�. The implication of using this pattern is that it requires
adaptations through inheritance, requiring an application restart to accomplish any change.
Figure 2.18(a) shows the unification of the template and hook classes in the same class.
(Pree, 1996).

Those methods that meant to be extended are called �hook methods�, and the
methods that call them are called �template methods� (Gamma et. al. 1995). Template
methods define the behavior, flow of control or the interaction of objects that must be
common for any of the classes that extend the base class. This allows the extended classes to
change the hook method behavior without changing the source code for the class that
implements the template method.

Separation

When the code for the template and hook methods is kept in different classes, it
provides an implementation to the combination principle called �Separation�. Separation
corresponds to an abstract coupling between the template and hook classes, allowing the
template class behavior to change by composition, instead of by inheritance. This also allows

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 75

runtime substitution of H, instead of requiring a code change, which implies an application
restart. Figure 2.18(b) shows the separation of the template and hook classes. (Pree, 1996)

(a)

TH T H

(b)

Figure 2.18 � (a) Unification and (b) Separation of template and hook classes. (Pree, 1996)

Recursive combination patterns

It is possible to make the template class as a descendant of a hook class (see Figure
2.19(a)). In the degenerated version of the recursive combination, template and hook classes
are unified (see Figure 2.19(b)). This situation can lead to a set of recursive combinations that
allow the building of directed graphs of objects. Then, instead of plugging a simple object, it
is possible to compose directed graphs of objects. The template and hook methods must
have the same signature to make the forwarding work, even if the code for the template and
hook are separated. (Pree, 1996)

(a)

T

H

(b)

TH

Figure 2.19 � Recursive combinations of template and hook classes. (Pree, 1996)

Chain of collaboration

The chain of collaboration happens when the template and hook classes are unified in
the same class and each unified class can refer to another 0 or 1 class, leading to a line of
objects that collaborate to solve a specific problem. The main difference between this chain
of collaboration and the behavior composition is that �TH objects can be viewed as equally
ranked and interchangeable in the sense that each TH object can refer to another TH object�
(Pree, 1996). This construction also makes the T and H methods to be the same: the method
should verify if it is possible to help to solve the problem and act, before it forwards the
request to the next object in line.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 76

2.5.3.2 Construction principles and the GoF design-patterns

Many of the design-patterns shown in the GoF (�The gang of four�, Gamma et al.
1995) book are examples for small frameworks that apply the above construction principles.
The design-patterns vary only on the semantics for the hot spots. (Pree, 1996)

GoF patterns with a template-hook unification

The most obvious pattern from the GoF catalog that is based on the unification
principle is the Factory Method pattern. The unified template and hook class is called Creator,
and the hook method Factorymethod(). (Pree, 1996)

GoF patterns with a template-hook separation

Most GoF patterns, though, are based on the Separation. Among them, Bridge,
Abstract Factory, Builder, Command, Interpreter, Observer, Prototype, State and Strategy.
Table 2.1 below shows how the catalog patterns and its corresponding hook method and
class, besides its template class and hot spot semantic. (Pree, 1996)

GoF patterns with recursive template-hook combinations

Table 2.1 � Naming issues of catalog entry. (Pree, 1996)

Catalog Entry Hook Class Hook Method Template Class Hot Spot Semantics
Abstract Factory AbstractFactory CreateProduct() Client Families of product

objects
Builder Builder BuildPart() Director How a complex

object is created
Command Command Execute() Invoker When and how a

request is fulfilled
Interpreter AbstractExpression Interpret(�) Client Interpretation of a

language
Observer Observer Update() Subject How the dependent

objects stay up to
date

Prototype Prototype Clone() Client Class of object that
is instantiated

State State Handle() Context States of an object
Strategy Strategy AlgorithmInterface() Context An algorithm

Some of the design-patterns apply the recursive combinations shown before. When
template and hook classes are separated and a template object can refer to any number of
hook objects, the pattern is the Composite. When template and hook classes are separated,
but each template object can refer to at most one hook object, the pattern is Decorator.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 77

When the template and hook classes are unified and each object can refer to at most one
other object, it is named Chain of Responsibility. (Pree, 1996)

2.5.4 Hot-spot-driven design

The problem with frameworks design is how to balance the flexibility versus the
complexity of use of that framework. Less flexible solutions tend to keep the framework
smaller and diminish the cost of maintenance and reuse. To find out the most important hot
spots then becomes a major issue when designing a framework. One technique shown at
(Pree, 1996, 1997 and 2000) is to use hot spot cards, to express both data and
behavior variation points (see Figure 2.20). It is almost certain that a framework will need a
number of iterations before it is considered well designed. Important hints to cut that
number of iterations are: asking the right questions to the right people (it seems obvious,
although it is not always easy to find who the right person may be); investigate similar use
cases, trying to spot the differences between them; examine maintenance of old similar
systems, the spots that change more often are likely the spots where flexibility is more
required.

 Hot Spot Name
 Specify degree of flexibility:
 Adaptation without restart
 Adaptation by end user

General description of semantics:

Sketch hot spot behavior in at least two specific
situations:

Figure 2.20 � Layout of function hot spot card. (Pree, 1996)

Hot spot cards are a tool to improve communication between domain experts and
software engineers, but they lack the capability to express recursive combinations. So,
according to (Pree, 1996), it is up to the software engineer to use them in order to produce
more elegant and flexible architectures.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 78

2.5.5 Applying Software Engineering Issues

Along this thesis, the above concepts are extensively applied. Especially in Chapter 3
where the CANN framework architecture and implementation is discussed, most of those
concepts can be identified such as: classes, components, design patterns and framelets.

The CANN framework was completely built taking care of properly applying these
concepts from the very beginning. The first design rounds of the ANN framework
construction were done using the hot-spot-driven design to identify its flexibility points. By
using UML the object model was refined many times during the sessions of discussion
between the ANN and SWE experts. The result is an object model where some framelets are
identified.

The identified framelets were carefully implemented in Java. The implementation took
care of applying the proper design patterns for each desired semantic situation. As Java
evolved to implement its components model, JavaBeans, the principal objects evolved to Java
components.

In order to validate the components and framelets, four different ANN models were
implemented using them. Besides this, an ANN simulation environment was built. To
conclude, study cases under well-controlled environment validated the implementations.

The result of the whole implementation effort is a flexible ANN implementation and
simulation environment, as well as a set of SWE implementation and design experiences
gained from the application of the construction of ANN software.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 79

3 T h e C A N N s o l u t i o n

This chapter explains in details the implementation of the CANN (Components for
Artificial Neural Networks). It shows how each of the core frameworks where defined and
implemented. At the end, a comparison to other approaches are presented.

3.1 Introduction

There are numerous books and papers about ANN implementations and ANN
development, besides tools and freely available programs on the Internet that address the
development of ANN or even one or another ANN model in object-oriented fashion. But
most of this work is only a wrapping of C to C++ or Java code being limited as object-
oriented design and architecture. This code, in general, is not reusable besides sometimes
being very usable and efficient. Rogers (1997) classifies this approach as coarse-grained
because the ANN objects encompass a great deal of functionality, and do not exploit the
inherent object nature found in ANN.

The implementation of this coarse-grained software for ANN may happen for many
reasons:

• Difficulty in approaching the problem of programming the algorithms with
objects that represent connectivity, functionality and cooperation.

• Opposed to the coarse-grained approach, the implementation of such classes
could lead to a fine-grained solution, which perhaps can be an inefficient
solution. On the other hand, the fine-grained approach can be ideal to
implement the ANN architecture to enhance existing ones because it is more
elegant and flexible from the software engineering point of view. It is difficult
to balance the two approaches.

Thus, the goal of implementing an object-oriented solution for ANN software is to
build a set of tools to develop ANN and to provide design and programming studies that can
help gradually increase the flexibility, reusability and velocity of different ANN system
development efforts. In this work, the developed prototypical tool set is not complete and

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 80

the implemented models do not cover everything in the ANN domain but are sufficient to
have a deep study of the field to meet the goals of this work.

The basic principle in building on object-oriented architecture is to find out the
commonalties in the application area, so that it is necessary to find the common aspects
among the various ANN models. The first common elements that show up are the neurons
and synapses. Later, other elements can also be defined such as layers of neurons,
mathematical functions, similar interfaces to the external world, etc.

3.1.1 Why build Components for ANN?

An ANN implementation should be flexible enough to solve problems in several
application domains. This chapter focuses on this aspect i.e., constructing a flexible ANN
system. In ANN software development, it is common to redevelop models from scratch each
time a different application must be accomplished. There are tools that try to avoid this and
help on the main ANN development aspects offering some pre-defined building blocks.
Unfortunately, in general, these tools are commercially available software and their structure
is not open for analysis. Furthermore, ANN software developers usually:

• Think about only one neural model to solve a specific application problem.

• Come up with very specific implementations for a particular problem.

• Concentrate on ANN performance and not on the construction of different
ANN models and its reusability in different problem domains.

Thus, object-oriented design and implementation have hardly been applied, without
compromises, so far in this domain area. The intention of this work is to build a flexible
object-oriented architecture in order to solve the following problems related to the
implementation of ANN:

• The architecture should be flexible/extensible to deal with various neural
models.

• Flexible ANN architectures that can change their structure and behavior at run
time allow experiments to gain better results.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 81

• It should be easy to have different neural network models distributed over a
network. In this way, a suitable solution to a decision problem can be found
more quickly.

• In the long run, the object-oriented architecture could form the basis of
building up hierarchies of ANNs working together, cooperating, and acting as
intelligent agents in a distributed environment.

Many important aspects of ANN development were already covered that certainly
explain some reasons for developing ANN components. But no reason is stronger than
experience. The experience of developing software and continuously adapting it to different
situations in an infinite loop is sometimes frustrating. This adaptation means having to
frequently migrate code from one platform to another, to adapt code to a new application
domain, to adapt code to a specific user necessity, to adapt code to new improvements on the
ANN theory, to adapt code to implement new ANN models, and so on. Later, the
experiences collected by implementing a traditional software solution for ANN (the Hycones
expert system) are briefly explained.

3.1.2 The Hycones system as starting point

Hycones (short for Hybrid Connectionist Expert System; Leão, 1993) is a sample
hybrid system that is especially designed for classification decision problems. The core
technology is artificial neural networks based on the Combinatorial Neural Model (Machado
and Rocha 1989 and 1990). The experiments with this model proved that it is powerful for
classification problems, providing good results ranging from medical diagnosis to credit
analysis (Leão 1993a, Reátegui 1994, da Rosa 1995). This section begins with a discussion of
the principal features of Hycones. Based on this overview the problems regarding its
flexibility are outlined. These problems were encountered when Hycones was applied to
different domains.

Hycones is a generator system in the sense that its inherent ANN system, the CNM,
generates, upon demand, as many neurons as necessary to solve the domain problem. It can
also generate other AI structures such as frames or semantic rules based on the knowledge
built by the ANN. The fact that Hycones is a generator system already indicates that the
design of a generic architecture constitutes an important goal right from the beginning.
Unfortunately, the conventional design and implementation did not provide the required
flexibility as will be outlined in Section 3.1.2.1.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 82

The first step in using Hycones is to specify the input and output nodes of the ANN.
In the case of a customer classification system, the input nodes correspond to the
information on the order form. Hycones offers different data types (e.g., string values, fuzzy
value ranges) to specify the input neurons, which maps the so-called findings. The output
neurons, called hypotheses, correspond to the desired decision support. For example, in the
case of a customer classification system, the customer categories become the output neurons.

?
…Input Neurons

Output Neurons

HYCONES

…

…

Combinatorial Neurons

Input Neurons

Output Neurons

Figure 3.1 - Hycones as ANN generator.

Based on the information described above, Hycones generates the Combinatorial
Neural Model (CNM) topology depending on some additional parameters (various
thresholds, etc.). Figure 3.1 schematically illustrates this feature of Hycones. Each
combination of input neurons contributes to the overall decision. CNM applies an inductive
learning that is performed through the training of the generated ANN based on available data
using a punishment and reward algorithm and an incremental learning algorithm (Machado
and Rocha 1989). Inductive learning allows automatic knowledge acquisition and incremental
learning.

Once the generated ANN is trained, Hycones pursues the following strategy to come
up with a decision for one specific case (e.g. a customer): the ANN evaluates the case and
calculates a confidence value for each hypothesis. The inference mechanism finds the
winning hypothesis and returns the corresponding result.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 83

Additional expert knowledge can be modeled in expert rules (Leão and Rocha 1990).
For example, rules describing typical attributes of customers belonging to a particular
category could be specified for the mail order decision support system. Such rules imply
modifications of the weights in the ANN. Figure 3.2 exemplifies this Hycones property. The
expert rule: I3 & I4 & In => O2, corresponds to the strengthened connections among the
input nodes I3, I4 and In, the combinatorial node C3, and the output node O2 of an ANN.

I3 I4 In

…

…

O2O1

I2I1

C3C1 C2 C4

…

Figure 3.2 - Incorporating expert rules into the ANN topology.

3.1.2.1 Adaptation problems

Despite the intention of Hycones to be a reusable generator of decision support
systems, the Hycones implementation had to be changed fundamentally for each application
domain. In other words, the Hycones system had to be implemented almost from scratch for
each new application domain. What are the reasons for this unsatisfying situation?

Limits of hardware & software resources

The first Hycones version was implemented in CLOS. CLOS simplifies the
implementation of core parts of Hycones, but the execution time turns out to be insufficient
for the domain problems at hand.

In subsequent versions of Hycones, parts of the system were even implemented on
different platforms to overcome performance problems and memory limits. For example, the
ANN training algorithm is implemented in C on a Unix workstation. C was chosen to gain
execution speed. Other parts of Hycones, such as an interactive tool for domain modeling by
means of specifying expert rules, are implemented on PCs and use Borland Delphi for
building the GUI.

Complex conceptual modeling

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 84

This issue is also related to performance problems: Hycones manages the complex
ANN topology by storing the information of all the connections and their corresponding
weights in main memory. (Hycones provides no parallelization of ANN training and testing.)
Due to memory limits, only parts of the ANN structure can be kept there and the rest is
stored in a database. Roughly speaking, database records represent the connections and
weights of one ANN topology. In general, this forms quite a complex conceptual model,
involving overhead when swapping ANN weights between memory and database. The way in
which the information about the generated ANN is stored in database tables had to be
changed several times to be optimal for the database system in use. These changes are not
only tedious, but also error-prone.

The fact that Hycones also became a hybrid system with regard to its implementation
implies complex data shifting between different computing platforms. The parameters
comprising the specification for the ANN generation are entered on PCs, but the ANN
training and testing is done on Unix workstations. Finally, if the user prefers to work with the
decision support system on PCs, the generated and trained ANN has to be transferred back
from the Unix platform to the PC environment.

Neural network models

Hycones supports only one ANN model, the Combinatorial Neural Model, but it
should be possible to choose from a set of ANN models, the one that is best suited for the
decision support problem at hand. A version of Hycones (Guazelli and Leão, 1994) was
developed using the ART (Grosberg, 1987). This version was hard coded, so the CNM and
ART implementations are independent and nearly no reusability was applied.

Conversion of data

An application of Hycones requires providing of data for ANN training and testing. Of
course, various different ways of dealing with these data have to be considered. For example,
data are provided data in ASCII-format, in relational database tables, or in object databases.
The data read from these sources must be converted to valid data for the ANN input. This
conversion is done based on the domain knowledge, which also changes from application to
application. Though this seems to be only a minor issue and a small part of the overall
Hycones system, experience has proven that a significant part of the adaptation work deals
with the conversion of training and test data.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 85

In order to overcome the problems mentioned above, Hycones was completely
redesigned based on framework construction principles. The problems of the conventional
Hycones implementation form a good starting point for identifying the required hot spots.
The next section presents the hot-spot-driven redesign and implementation of Hycones.

3.2 Design of a neural network framework architecture

The project where the components for ANN were developed was called Components
for Artificial Neural Networks, CANN for short, usually referred in this work as CANN
project and CANN tool for its software implementation. The goal of the CANN project was to
build up a framework for implementing ANN and a simulator for running them. The
simulation environment developed on the CANN was used as the test bed for the its
components.

The hot spots of CANN can be summarized as follows:

• Data conversion: The simulation environment should provide flexible
mechanisms for converting data from various sources. CANN should be able
to support these mechanisms to feed data to the different ANN models.

• Domain modeling: It should be natural to model different problems and
associate them to different data sources and ANN models.

• Inference engine: CANN should support several ANN models (as already
pointed out, two separate Hycones versions implemented two different ANN
models the Combinatorial Neural Model and the ART). The idea here is to
have more than one model running on the same simulation environment at the
same time. The ANN internal structure and behavior changes from model to
model, but some significant aspects can be kept flexible in order to facilitate
any ANN model implementation.

• Parallelism: In order to improve performance, parallelism shall be implemented
at the level of ANN instances.

• Distribution and code mobility: Also to gain performance, a solution for the
mobility of the different ANNs being trained on the simulation environment
must be implemented.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 86

• General GUI: The simulation of ANN shall be done in a very similar way for
different ANN models. The actions applied over the ANN models are similar
to the different ANN models so that a unique general GUI can be developed in
order to manage any kind of ANN model. There are some aspects that are
unique to each ANN model that shall be kept flexible such as the parameters
configuration and the ANN structure visualization.

Figure 3.3 shows the frameworks considered essential to implement the hot spots listed
above.

ANN
Framework

Simulation
Framework

GUI
Framework

Data Converter
Framework

Domain
Framework

Figure 3.3 � CANN frameworks

Domain knowledge modeling and data conversion are parts of the architecture that are
good candidates for defining general frameworks. The CANN shall concentrate on finding a
generalized way of defining the domain so that it can be applied to any ANN model and
domain problem. Data conversion shall be implemented in order to facilitate database and
text file access for learning and testing data fetching. In this way, it is expected to solve the
problem of implementing this part of the system for each new applied domain problem.

An ANN framework shall be defined in order to facilitate the implementation of
different ANN models. Modeling the core entities of the ANN, that is, neurons and
synapses, as objects solves the complex conceptual modeling of Hycones. Instead of storing
the generated ANN in database tables, the topologies are saved as objects via Java�s
serialization mechanism. But the most important expected contribution of such a framework
is to be able to reuse those core ANN components for implementing new ANN models.

It is also important to meet the goal of having different ANN instances of different
ANN models running at the same time. The object-oriented model also forms the basis for
implementing this simulation facility. Besides this, it forms the architecture for parallelizing

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 87

and distributing the ANN learning and testing. These aspects are discussed separately in
Chapters 4 and 5.

Finally, Java, being a portable language and system, solves the problem of splitting the
original system into subsystems implemented in various programming paradigms on different
platforms. CANN runs on all major computing platforms.

3.2.1 Summary of desired software characteristics and relation to other work

Section 3.3 analyzes and compares related work to the CANN project. Table 3.1
summarizes the considered software characteristics and shows whether the other authors also
approach them.

Table 3.1 � Software characteristics and the analyzed related work

Software characteristic CANN Freeman Masters Vondrák Rogers
Domain knowledge modeling !

Accessing different data
sources

!

Data conversion ! !
Different ANN models

implemented
! ! ! ! !

ANN as reusable
components

! ! ! !

ANN building components ! ! ! ! !
Different ANN instances
running at the same time

!

Runtime addition of new
ANN components

!

ANN GUI components !
Parallelism !

Distribution !
Platform independent !
Hierarchies of ANN�s

The related work analysis was done comparing the work of other four authors. The
first is the simulation software based on structured programming in Pascal proposed by
Freeman and Skapura (1992). The other authors develop ANN software based on the object-
oriented paradigm. They are: Timothy Masters (1993), Ivo Vondrák (1994) and Joey Rogers
(1997). Masters centers his work giving tips on how to implement ANN specific functionality
in C++. Vondrák�s work is fully concentrated on designing a fully object-oriented solution of
an ANN software implementation. His language of choice is Smalltalk. Finally, Rogers also

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 88

concentrates on designing object-oriented software to implement diverse ANN models in
C++.

From Table 3.1 it becomes clear that CANN implements characteristics that are not
addressed by the other authors. Their work concentrates on the construction of software
artifacts to build ANN models and are not concerned about issues such as the ANN models
applicability to the problem at hand, performance, integration to data and GUI control.
CANN implementation goes beyond not only by proposing the ANN model software
construction but also suggests the implementation of aspects that are important for the
simulation and usability of the software infrastructure. The next section explains the CANN
software architecture and design that support the desired software characteristics sketched in
Table 3.1.

3.2.2 The ANN framework

The ANN framework was designed in order to reflect the necessary building blocks for
creating different ANN architectures. The design takes into consideration the flexibility for
reusing the core entities of an ANN.

3.2.2.1 Object-oriented modeling of the core entities of neural networks

Neurons and synapses of ANNs mimic their biological counterparts and form the basic
building blocks of ANNs. CANN provides two abstract classes, Neuron and Synapse, whose
objects correspond to these entities. Both classes offer properties that are common to
different neural network models. The idea is that these classes provide basic behavior
independent of the specific neural network model. Subclasses and associated classes add the
specific properties according to the particular model.

Receptor Neuron

Source Neuron

Synapses

… …

…

…

Figure 3.4 - The relationship between Neuron and Synapses objects.

An object of the Neuron class has the activation as its internal state. It provides
methods to calculate its activation and to manage a collection of Synapses objects. A Synapse

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 89

object represents a direct connection between two neurons (here distinguished by the names
Receptor and Source). The receptor neuron manages a list of incoming synapses (represented by
the solid arrows in Figure 3.4) and computes its activation from these synapses. A Synapse
object has exactly one Neuron object connected to it, that is the source of the incoming sign.
The dashed arrows in Figure 3.4 represent the computational flow (set of incoming signs
from all source neurons). The incoming signal from one source neuron is processed by the
synapse and forwarded to the receptor neuron on its outgoing side.

+compute()
+generateSynapses() : int

-computationStrategy : ComputationStrategy
-currentActivation : int
-attribute : Attribute
-incomingSynapsis : Object

Neuron

+compute()
+updateWeight()

-computationStrategy : ComputationStrategy
-sourceNeuron : Neuron
-weight : int
-currentFlow : int

Synapse

1

-has

*
1

-has

1

Figure 3.5 - Neuron and Synapses composition.

As the synapse knows its source neurons, different neuron network topologies can be
built, such as multilayer feedforward or recurrent networks. The Figure 3.5 shows the
implementation of the Neuron and Synapse classes. The process of creating the neural network
architecture is controlled by a method called generateNet() and belongs to the interface
INetImplementation that is explained later in Section 3.2.3. Each neural network model is
responsible for its topological construction. Different neural models use the Neuron and
Synapse classes as the basic building blocks for the neural network structure and behavior
construction. Code 3.1 shows some coding aspects of the Neuron class and Code 3.2 the
Synapse class to make clear how these classes are implemented. The core explanations for
them come in the next sections.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 90

Code 3.1 - The Neuron class

public abstract Neuron class extends Object implements Serializable {
 // stores the resulting activation computation

int currentActivation;

 // vector of input Synapse objects

Vector incomingSynapses;

// strategy for processing input values (see explanation in the
// text)

 ComputationStrategy compStrategy;

 Neuron() {…}

 Neuron(ComputationStrategy cs) {…}

 abstract void compute(Neuron upNeuron, Vector parameters);
 abstract int generateSynapses(

Vector sourceNeurons,
ComputationStrategy synapsesCompStrategy);

 float getCurrentActivation() {…}

 Vector getSynapses() {…}

 synchronized void setCurrentActivation(float newActivation) {…}
}

Code 3.2 - The Synapse class

public abstract class Synapse extends Object implements Serializable {
 // the neuron that the synapse receives computation
 Neuron sourceNeuron;

 // strategy for processing input values (see explanation in the

// text)
 ComputationStrategy compStrategy;

int weight; // synaptic weight
 int currentFlow; // stores the result of the synapse computation

 public Synapse(Neuron addtlSourceNeuron,

ComputationStrategy cs) {…}

 public Synapse(ComputationStrategy cs) {…}

 abstract void compute(Neuron upNeuron, Vector parameters);

 void setWeight(float calcWeight) {…}

 float getWeight() {…}

 float getCurrentFlow() {…}

 void setCurrentFlow(float cf) {…}
}

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 91

3.2.2.2 Using Neuron and Synapse classes to create neural network topologies

In the case of implementing a multilayer feedforward neural network, the neurons for
all necessary neuron-layers are created initially. Later, the necessary synapses to connect the
neurons at different layers are created and correctly connected to the neuron layers. A list of
synapses (called incomingSynapses) controls each instance of Synapse that connects an output
neuron to a hidden neuron. The abstract Neuron class (see Code 3.1) implements this list.
When creating instances of the Synapse class (see Code 3.2), it is informed in its constructor to
which hidden neuron it must be connected. The reference to the hidden neuron is stored in
the instance variable sourceNeuron. This process is repeated for all network layers. The abstract
method generateSynapses(Vector sourceNeurons, ComputationStrategy synapsesCompStrategy) in the
Neuron class, is responsible for the generation of Synapse instances and their appropriate
connection to source neurons. As this method is specific to different neurons on different
neural models, it is only implemented in its subclasses. The hierarchy of the classes derived
from Neuron can be seen in Figure 3.6 below.

Neuron

BPNeuron CNMNeron SOMNeuron ART1F1Neuron

ART1F2Neuron

BPInputNeuron

BPBiasNeuron

BPOutputNeuron

CNMInputNeuron

CNMCombinatorialNeuron

CNMHypothesisNeuron

SOMInputNeuron

SOMOutputNeuron

Figure 3.6 � Neuron hierarchy.

The Neuron and Synapse abstract method compute() needs a more detailed explanation,
which will be done in the next section. The remaining methods in both classes are simply
getter and setter methods to get and set the state of the instance variables. Special attention
has to be given to the setter methods of the instance variable currentActivation (method
setCurrentActivation()). As this method can be called by different synapses running in parallel, it
was necessary to synchronize it in order to warrant the currentActivation value integrity.

The class hierarchy for the Synapse class is presented below in Figure 3.7. It is possible
to find out in the two hierarchies, Neuron and Synapse, that the subclasses are created to

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 92

implement each specific ANN model. The hierarchies are natural for an ANN expert. The
subclasses of Neuron implement the abstract methods generateSynapses() and compute(). The
Synapse subclasses implement the abstract method compute(). Both subclasses implement
specific methods necessary for the specific ANN model at hand. For example, the CNM
specific Synapse subclasses include punish and reward accumulators and methods to manage
it.

Synapse

BPSynapse CNMSynapse SOMSynapse ART1Synapse

ART1F2Neuron

CNMLowerSynapseCNMUpperSynapse

Figure 3.7 � Synapse hierarchy.

The software architecture explained above was successfully used to implement different
neural network models involving different neural network architectures. The implementation
of recurrent computation in the proposed architecture typically implies synchronization of
the computational flow. It is necessary to select the next neuron to do the computation in a
learning step. The typical solution is to choose the neuron randomly (Haykin 1994).

An interface called INetImplementation is tightly associated with the Neuron class
(INetImplementation interface is explained in Section 3.2.3). Roughly speaking, an
INetImplementation object harnesses the ANN in order to make decisions. The
INetImplementation object represents the inference engine (= neural network model) of the
running CANN system. Its interface reflects the needs of the decision making process. For
example, a method getWinner() computes which output neuron has the maximum activation.
Due to the design of INetImplementation, CANN supports different inference engines. How to
switch between different ANN models is discussed in Section 3.2.3.

3.2.2.3 The neuron and synapse behavior

Specific ANN models imply the need for specific behavior of the Neuron and Synapse
classes. A simple solution would be to create subclasses of Neuron and Synapse, but this
solution would generate a nested hierarchy, because, for each neural model, many subclasses
of Neuron and Synapse would be created to implement each specific behavior. For example, in

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 93

case of Backpropagation the subclasses would have the names BPNeuron and BPSynapse.
BPNeuron would factor out commonalties of the Backpropagation-specific classes
BPInputNeuron, BPHiddenNeuron and BPOutputNeuron. If the user needed to change anything
on the functionality of any of those classes, he would have to subclass it. The part of the
neuron and the synapse that changes frequently is its activation calculation. For example, to
change the activation function of a Backpropagation from a linear to the sigmoid function,
there three BPNeuron subclasses would be needed for implementing each function. Quickly,
there would be many subclasses of each kind of Backpropagation neuron and synapse. For
each different neural model, the same would happen, generating an exploding hierarchy
where the functionality of each one is hard-coded in the specific subclass.

To avoid this, the Bridge pattern was used (Gamma et al., 1995). This pattern is
equivalent to the Separation Metapattern (Pree, 1997), and therefore has the ability to change
neuron and synapse behavior at run-time. Figure 3.9 shows the application of this pattern to
the Neuron class. Its application is analogous to the Synapse class. The necessity of the flexible
behavior for Neuron and Synapse was detected during the hot spot analysis. The Figure 3.8
shows the hot spot used to determine the flexible behavior for these classes.

 Title: Making the neurons and synapse behavior flexible
Description: The neurons and synapses behavior is given by mathematical functions.
The simply change of the mathematical function may change the results of the given
ANN model
Runtime: Nice to have
Changed by end user: Yes, by programming

Description of 2 instances:

• A Neuron with a Fuzzy AND behavior may be used by a CNM ANN or any
Fuzzy model

• A Synapse with a simply multiplication function can be used by both
Backpropagation and CNM

Figure 3.8 � CANN Hot Spot Cards for Neuron and Synapse behavior

Neuron and Synapse are implemented as abstract classes. Concrete classes are derived
from those abstract classes for each ANN model. For example the already cited BPNeuron
and BPSynapse would be the concrete classes to implement Backpropagation specific aspects
to neuron and synapse. If necessary, subclasses of those concrete classes can be created to
implement layer specific aspects, like BPInputNeuron and BPOutputNeuron (Backpropagation

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 94

hidden neurons are implemented by the BPNeuron class). The Backpropagation specific ANN
layers are then built using those classes. Those would be the final classes in the hierarchy, no
other class should be necessary to be implemented.

The necessary behavior of each neural model is added to these classes by composition
through the associated interface ComputationStrategy (see Figure 3.9). The different behaviors
are implemented in classes that implement ComputationStrategy and can be used by different
model implementations through the Neuron and Synapse classes. Examples of behavior-
specific classes are functions that are typically implemented by the neurons and synapses to
calculate their activation. In the CANN framework some components for this purpose where
implemented, such as: CSEuclidianDistance for the SOM neuron and CSPartialDistance for the
SOM synapse; CSFuzzyAND and CSFuzzyOR for the CNM neurons; CSMultiplicator for
CNM and Backpropagation synapses; etc.

BPNeuron CNMNeuron SOMNeuron

BPHiddenNeuronBPInputNeuron BPOutputNeuron

FuzzyOR FuzzyAND Product

+compute() : float

«interface»
ComputationStrategy

1

-applies

1+compute()

-currentActivation : int

Neuron

Figure 3.9 - Design of flexible behavior based on the Bridge Pattern.

The ComputationStrategy also implements the pattern Flyweight (Gamma et al. 1995). The
framework has only one instance of each class that implements it. Each instance is shared by
a large number of Neuron and Synapse instances. This keeps the memory footprint significantly
smaller and improves the behavior reusability. For example, all CNM combinatorial neuron
instances (can be thousands at the same time) would use the same instance of CSFuzzyAND
computation strategy.

3.2.2.4 Support of different neural network models through the Separation pattern

One important aspect is to try to separate the logic of manipulating the domain and the
data cases for learning and testing from the core ANN implementation aspects. In this sense,
the creation of the class NetManager and interface INetImplementation was elaborated. The
abstract class NetManager shall hold the aspects that belongs to the ANN process outside the
ANN architecture boundaries such as: manipulating domain knowledge, fetching test and

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 95

learn data, managing learn parameters, and managing the whole flow of learning and testing
processes based on user defined parameters. The processes that are general to any ANN
model are implemented directly in this class such as: GUI control, and learn and test cases
manipulations. Specific processes shall be implemented inside its subclasses that are defined
for each implemented ANN.

The classes that implement the INetImplementation interface hold the specific ANN
model architectural implementation. They implement the construction of the ANN
architecture by combining the Neuron and Synapse classes and implement each ANN inherent
algorithms.

Figure 3.10 exemplifies how three ANN models can be incorporated in CANN by
implementing the interface INetImplementation: Backpropagation (BPImplementation), SOM
(SOMImplementation) and CNM (CNMImplementation).

BPImplementation SOMImplementation CNMImplementation

+generateNet() : int
+LearnCase() : void
+TestCase() : Object

«interface»
INetImplementation

1

-manages

1

+generateNet() : int
+startLearn()
+restartLearn()
+createNetImplementation()
+createFrameNeuralNetwork()
+run()

#domain : Domain
#netImplementation : INetImplementation

NetManager

Figure 3.10 - ANN models that implement INetImplementation.

A specific ANN model is defined by implementing the interface INetImplementation and
its corresponding hook methods such as generateNet() and learnCase(). The complete interface is
shown in Code 3.3 below.

The first three methods of Code 3.3 are used for the distribution solution explained in
Chapter 5. The generateNet() method shall implement the generation of the ANN architecture.
If the network wasn�t yet generated, the getNetSize() method returns the size the ANN will
have in number of neurons and synapses if it is generated for a given domain problem at
hand. If the ANN was already generated this method returns the size of the actual network.
The learnCase() method is called when one case was already fed by the implemented domain,

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 96

meaning that the network must perform its learning epoch for that case. More explanations
on the relation of domain and the ANN framework are given in Section 3.2.3.

The testCase() method also works the same way as the learnCase() method: when a testing
case is ready to be analyzed by the ANN, this method is called. It returns a Vector that can
contain any object, in general an array of numeric results containing the outputs of the output
neurons and, if possible, an array of strings containing the explanation about the results. The
methods setLearningParameters() and getLearningParameters() are used to feed and get the
appropriate ANN learning parameters that in general are defined by the user at runtime. The
method setParallelExecution() is used to request to run in parallel, if possible. The method
getStopLearning() is used to verify if the ANN has already finished its learning process.

Code 3.3 � The INetImplementation interface

public interface INetImplementation extends java.io.Serializable {

 public void setProxies(IDomain domain) throws java.rmi.RemoteException;
 public void atLocation();
 public boolean restoreObjectReferences();

 // return any number different than zero to indicate that the generation
 // succeed or zero that it failed
 public int generateNet(IDomain domain) throws java.rmi.RemoteException;
 public int getNetSize(IDomain domain);

 public void learnCase();

 // return a Vector with the results and explanation if possible
 public Vector testCase();

 public void setLearningParameters(Vector parameters);
 public Vector getLearningParameters();

 public void setParallelExecution(boolean pE, int threads);

 public boolean getStopLearning();
}

An important design issue is that a developer who reuses such CANN classes does not
have to worry about which specific subclasses of Synapse and Neuron are associated with a
particular ANN model. In order to solve this, the Factory pattern (Gamma et al. 1995) was
applied. A concrete class that implements INetImplementation, such as CNMImplementation,
already takes care of the correct instantiation of Neuron and Synapse subclasses (see below).

ANN-Adaptation of CANN

A sample adaptation of CANN exemplifies the necessary steps to adjust the framework
components to a specific neural network model (see Figure 3.11):

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 97

3)
applies a

applies a

applies a

applies a

applies a

manages list of output neurons

Hidden Neurons

Input Neurons

Output Neurons

CNMImplementation

FuzzyOR

FuzzyAND

MultiplicatorUpper Synapses

Lower Synapses

Attribute

Multiplicator

1)

2)

Figure 3.11 - Building CNM architecture.

1. The CNMImplementation object is responsible for the creation of OutputNeuron
objects (called Hypothesis neurons in the CNM definition, Machado 1990),
with the CSFuzzyOR behavior and for the creation of InputNeurons, whose
behavior is explained in Section 3.2.6.

2. An OutputNeuron instance then creates Synapse objects, which automatically
create HiddenNeuron instances (called combinatorial neurons in the CNM
definition, Machado 1990), with the CSFuzzyAND behavior. As the CNM
model has only one hidden layer, the neurons of the hidden layer are then
directly connected to the input layer.

3. The connections between the HiddenNeuron instances and the InputNeuron
instances are established in an analogous way. The Synapse instances of a CNM
model have behavior similar to the Backpropagation model using the same
CSMultiplicator computation strategy that simply does the multiplication of the
input activation with the synaptic weight and returns the result.

For the neural network generation process, the classes that implement
INetImplementation (in this case, the CNMImplementation) rely on the problem-specific domain
knowledge, whose representation is discussed in Section 3.2.4. The basic idea behind the
CNM inference machine is that numerous combinations (the small networks that form the
CNM hidden layer) all test a certain case for which a decision is necessary. Adding the
activation from all combinations amounts to the OutputNeuron activation. The OutputNeuron

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 98

with the maximum accumulated activation is the winner (CSFuzzyOR behavior). The CNM
object also provides an explanation by calculating those input neurons that most strongly
influenced the decision. Machado and Rocha (1989 and 1990) discuss the CNM-specific
algorithm.

Adding behavior to an ANN architecture

The sequence diagram in Figure 3.12 shows the sequence of computation that happens
when the ANN, either for learning or for testing, evaluates a case. The class that implements
INetImplementation knows the instances of output neurons that are implemented in the
structure already created. The result value of a case computation is implemented by the
output neurons� compute() method and can be retrieved by the getCurrentFlow() method (see
Code 3.1 � Neuron class). The INetImplementation class requests computation from the output
neurons by calling the compute() methods of all existing output neurons. When the output
neuron is requested to do its computation, it first requires its list of incoming synapses to do
the same. The synapses also have a source neuron that is requested to do its own
computation (see Code 3.2 � Synapse class).

The source neuron is a hidden neuron in the architecture and its compute() method
implementation also requests the computation of the connected synapses. In this way, the
request of computation flows from the output neurons to the input neurons. The input
neuron instance�s behavior is simply to take the activation from outside to be able to start the
ANN data processing. This activation comes from the class Attribute, explained in Section
3.2.4. In short, the instances of the Attribute class prepare the activation values from the data
read in the data sources. These prepared data (activation) are transferred to the input neuron
instances on demand.

When the computation flow goes back from the input neurons to the output neurons,
each synapse and neuron object is then able to do the necessary calculation it is supposed to
do and returns it to the object that requested it (other neurons and synapses). The instances
of ComputationStrategy class do this calculation. Finally, the compute() method of each output
neuron gets the computational results of all connected synapses and does its appropriate
computation. Then the resulting values can be consulted through the output neurons
getCurrentFlow() method. The INetImplementation implemented class is able to evaluate these
values and to make a decision.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 99

an INetImplementation a first OutputNeuron a first InputNeuron a first Attribute

Compute()

a first Synapse

Compute()

Compute()

getActivation()

the activation()

the activation()

the activation()

beValid()

getCurrentFlow()

the activation()

all done?

Figure 3.12 � Sequence diagram for a case computation.

The computational flow explained above is a parallel process internal to the neural
network architecture. Instances of Synapse and Neuron in the same layer can be completely
independent processes. Depending on the neural model, different synchronization must be
implemented in order get the correct results and to have optimal performance. The parallel
implementation strategy of the computational flow is specific to each model and a more
detailed discussion is done in Chapter 4.

To complete the appropriate behavior of the implemented neural networks, it is
necessary to have them related to the knowledge representation of the problem domain. The
next section explains how the domain model influences and interacts with the neural network
architecture.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 100

3.2.3 The Simulation framework

CANN should be flexible regarding its underlying ANN model. The choice of the
most appropriate ANN model depends on the particular decision problem at hand, and
usually it is necessary to try some different ANN models to see which one performs better.
Thus, the design should allow the trial of different ANN models. The hot spot card for this
flexibility is shown on Figure 3.13.

 Title: Adding new ANN components at the simulations environment at runtime
Description: The CANN simulator should be able to allow the addition of new
ANN models during the simulation of others in order to cope with longtime
simulations. Also more then one ANN shall be able to run at the same time.
Runtime: Yes
Changed by end user: Yes

Description of 2 instances:

• A Backpropagation ANN is running a simulation for more than 24 ours and
it is possible to add a RBF model to run at the same time. This can be useful
to evaluate its performance to the same problem domain in the same
simulation environment.

• A CNM model is running for evaluating new entries in a production
environment and a new already learned CNM model is added to substitute
the first one.

Figure 3.13 � CANN Hot Spot Cards for different ANN models

CANN should be able to manage various ANN models trying the solution for a
specific problem in a concurrent way: several neural models could run at the same time trying
a solution to the problem. To handle this idea the Project and NetManager classes were created.
The NetManager class is responsible for controlling, at run time, an instance of a neural model
and the Project class is responsible for managing a set of NetManager instances. A program can
run as many instances of the NetManager class as necessary to solve a problem. Instances of
the same or different ANN models shall be possible to be created at runtime.

As the learning of a neural model can take days, it would be interesting to be able to
add different ANN models at run-time. Thus, it would be possible to start different learning
trials during the learning or testing process of other neural models, without stopping the
processes already started. The added new models could be completely different from the
others already running. This means the possibility of having new models that have added or

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 101

deleted neurons and synapses on the ANN structure and/or changed its behavior by
changing learning strategies and tuning learning parameters. To have these kinds of
simulation characteristics, it is necessary to have quite a flexible architecture design. This
design was obtained through the hot-spot-driven design methodology (Pree 1995).

Code 3.4 shows part of the implementation of the NetManager class where it is possible
to see the instance variable netImplementation that holds the instance of a concrete class that
implements the INetImplementation interface. It is also possible to see the instance variable
domain that stores an instance of the Domain class. The Domain modeling affects directly the
ANN architecture as can be seen in Section 3.2.4.

NetManager implements methods such as initFrame() and createFrameNeuralNetwork() that
are used for controlling the associated GUI of an ANN instance. Methods like generateNet(),
startLearn() and restartLearn() are directly related to the management of the controlled ANN
instance implementation. Some methods are abstract such as createNetImplementation() and
run() and shall be implemented by the NetManager subclasses. The subclasses of NetManager
can be seen in Figure 3.14 below and implement functionality specific for the implemented
ANN model.

Code 3.4 � The NetManager class implementation

public abstract class NetManager extends Object implements Serializable,
Runnable {

 INetImplementation netImplementation;
 Domain domain;
 // …

 public void initFrame(DialogSimulate relatedDialog) {…}
 public void createFrameNeuralNetwork() {…}

 int generateNet() {…}
 void startLearn() {…}
 void restartLearn() {…}

 abstract public void createNetImplementation();
 abstract public void run();

}

To permit the addition of new neural models at run-time, it is necessary to abstractly
couple the Project with the class NetManager, that is, to rely on the Separation pattern. The
Project has a list of instances of the NetManager class that are responsible for different ANN

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 102

instantiation and execution. The relation between the Project class and the NetManager class
can be seen in Figure 3.14 below.

BPManager SOMManager CNMManager

+save()

#netManagerList : Object
#annList : Object
+domainList : Object

Project

1

-has

*

+generateNet() : int
+startLearn()
+restartLearn()
+createNetImplementation()
+createFrameNeuralNetwork()
+run()

#domain : Domain
#netImplementation : INetImplementation

NetManager

Figure 3.14 - NetManager abstractly coupled to Project

Code 3.5 below shows part of the class Project implementation. The instance variable
netManagerList stores a vector of instances of the NetManager class. The instance variable
annList has the list of possible ANN models that can be instantiated by the Project class and
stored on the netManagersList. For example, the annList may store the classes:
CANNP.NeuralNetwork.CNMManager and CANNP.NeuralNetwork.BPManager meaning that
those two ANN models can be instantiated in that project. Note that the whole name is
stored, keeping the packages path. The user can add ANN models in runtime and also create
new instances in runtime.

Code 3.5 � The Project class

public class Project extends Object implements Serializable,
ProjectModifiedListener, IRemote {

 Vector netManagersList;
 Vector annList;
 public Vector domainList;
 …
}

The CANN shall also provide a way that the user can describe a problem domain in
different ways or even have many problem domains simultaneously modeled to be analyzed
by the different instances of the ANN models running into a project. Consequently, a Project
may also manage a list of problem domain descriptions as can be seen in Figure 3.15 below.
The Domain class is explained in Section 3.2.4. Code 3.5 above shows the instance variable

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 103

domainList that is responsible for keeping a list of instances of the Domain class. How the
different ANN instances relate to the Domain instances will be shown in Section 3.2.4 below.

+save()

#netManagerList : Object
#annList : Object
+domainList : Object

Project

1

-has

*

+generateNet() : int
+startLearn()
+restartLearn()
+createNetImplementation()
+createFrameNeuralNetwork()
+run()

#domain : Domain
#netImplementation : INetImplementation

NetManager

-Evidences : Object
-Hypothesis : Object

Domain

1

-has* 1

-has

1

Figure 3.15 - Project coupling Domain instances

An important characteristic of the whole CANN architecture is that all classes that
compound the frameworks are Serializable (see Code 3.5). Being the Project class Serializable,
the user can store its characteristics, It means to store the instances of the modeled domain
problems and the instances of the associated ANN as well.

3.2.4 The Domain representation framework

As the principal application domain of CANN is classification problems, the chosen
object-oriented design of this system aspect reflects common properties of classification
problems. On the one hand, the so-called evidences form the input data. Experts use
evidences to analyze the problem in order to come up with decisions. Evidences in the case
of the customer classification problem would be the age of a customer, his/her home
address, etc. One or more Attribute objects describe the value of each Evidence object. For
example, in the case of the home address, several strings form the address evidence. The age
of a customer might be defined as a fuzzy set (Kosko 1992, da Rosa 1997) of values: child,
adolescent, adult, and senior (see Figure 3.16).

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 104

Fuzzy
Value

Fuzzy Set 0

1

adolescent adult

12 15 16 19 20

child
0.3

0.6
senior

50 60

Figure 3.16 - Fuzzy set example.

On the other hand, the hypotheses (classification categories) constitute a further core
entity of classification problems. In CANN an instance of class Domain represents the
problem by managing the corresponding Evidence and Hypothesis objects. Even based on
classification problems and focused on neural networks learning algorithms, the design
presented here can also be extended to support general domain representation for symbolic
learning strategies. Edward Blurock (1998) also works intensively on the domain
representation for machine learning algorithms. Although being completely independent
works, both lead to quite similar designs. Figure 3.17 shows the relationship among the
classes involved in representing a particular domain.

-Evidences : Object
-Hypothesis : Object

Domain

+setActivations() : boolean

-name : String
-Description : String
-Attributes : Object
-fetcher : EvidenceFetcher

Evidence

-name : String
-activation : float
-evidence : IEvidence

Attribute

+setActivations() : boolean

-name : String
-Description : String
-Attributes : Object
-fetcher : EvidenceFetcher
-relatedEvidencesAttributes : Object

Hypothesis

1

-manages

*

1

-manages*

1

-has

*

1
-has*

StringAttributeNumericAttribute

FuzzyAttribute

Figure 3.17 - Domain representation.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 105

The training and testing of ANN�s are the principal features of CANN. For both tasks,
data must be provided. For example, for training an ANN to classify customers, data might
come from an ASCII file. One line of that file represents one customer, i.e. the customer�s
evidences and the correct classification. After training the ANN, customer data should be
tested. To do this, CANN gets the evidences of a customer as input data and must classify
the customer. The data source might, in this case, be a relational database management
system. It should be clear from this scenario that CANN has to provide a flexible data
conversion subsystem. Data conversion must be flexible at run time, as the user may wish to
change the data source anytime during learning or testing. Thus, the Separation pattern is the
appropriate construction principle underlying this framework.

3.2.5 The Converter framework

Two abstract classes constitute the framework for processing problem-specific data,
class Fetcher and class EvidenceFetcher. Class Fetcher is abstractly coupled with the class
Domain (see Figure 3.18). A Fetcher object is responsible for the preparation/searching
operations associated with a data source. If the data source is a plain ASCII file, the specific
fetcher opens and closes the file. This includes some basic error handling.

-Evidences : Object
-Hypothesis : Object

Domain -sourceName : String
-sourceLacation : String
-randomExamples : boolean
-numberOfExamples : int

Fetcher

1

-has

1

ASCIIFetcher RDBFetcher OODBFetcher

Figure 3.18 - Dealing with different data sources.

The Evidence class and the Hypothesis class are abstractly coupled with the
EvidenceFetcher class (see Figure 3.19). Specific subclasses of EvidenceFetcher know how to
access the data for the particular evidence. For example, an EvidenceFetcher for reading data
from an ASCII file stores the position (from column, to column) of the evidence data within
one line of the ASCII file. An EvidenceFetcher for reading data from a relational database
would know how to access the data by means of SQL statements. Figure 3.19 shows the
design of these classes, picking out only class Evidence. The Hypothesis class has an
analogous relationship with the EvidenceFetcher class.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 106

Note that the Attribute objects prepare the data from external sources so that they can
be directly fed to the input neurons of the ANN (see Figure 3.11). This works in the
following way: each Evidence instance fetches its value from the data source, and this value is
applied automatically to all attributes of the evidence. Each attribute applies the conversion
function that is inherent to the specific Attribute class. For example, the StringAttribute
conversion function receives the string from the database and compares it to a given string
modeled by the expert, returning 1 or 0 based on whether the strings match. This numeric
value is stored by the attribute object and will be applied in the ANN input by request. The
ANN input nodes have a direct relationship with the attributes of the evidence (see Figure
3.11). When the learning or testing is performed, each input node requests from its relative
attribute the values previously fetched and converted. The attribute simply returns the
converted value.

-Evidences : Object
-Hypothesis : Object

Domain

+setActivations() : boolean

-name : String
-Description : String
-Attributes : Object
-fetcher : EvidenceFetcher

Evidence

+getEvidenceData() : Object

EvidenceFetcher

+setActivations() : boolean

-name : String
-Description : String
-Attributes : Object
-fetcher : EvidenceFetcher
-relatedEvidencesAttributes : Object

Hypothesis

1

-manages

*

1

-manages*

1

-has

*

1

-has*

RDBEvidenceFetcherASCIIEvidenceFetcher OODBEvidenceFetcher

Figure 3.19 - Data conversion at the evidence level.

Visual/interactive tools support the definition of the specific instances of
EvidenceFetcher and Fetcher subclasses. For example, in the case of fetching from ASCII
files, the end-user of CANN who does the domain modeling, simply specifies the file name
for the ASCIIFetcher object and, for the ASCIIEvidenceFetcher objects, specifies the
column positions in a dialog box. Such visual tools can be seen on chapter 7 (Figure 7.8).

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 107

3.2.6 Describing problem domains using the Domain and converter
frameworks

In order to better understand how to use the classes that form the Domain and the
converter frameworks let�s consider an example: building the necessary evidences and
hypothesis for a given domain problem for two different ANN models. The chosen domain
is the XOR problem. Both ANN models CNM and Backpropagation are able to solve this
problem.

The Boolean table shown in Figure 3.20 gives the XOR problem for two variables.
This is the data that will be fed to the ANN as learning cases. The Boolean table is created in
a text file that will be read by the CANN simulator as an ASCII file so that the Domain shall
have an instance of the ASCIIFetcher converter, and the converters for the implemented
attributes shall be of the type ASCIIEvidenceFetcher. The fetcher for each evidence will indicate
what position in the file record (line) is the data that shall be fed into the input neuron
associated to it.

 0 0 0
1 0 1
1 1 0
0 1 1

Figure 3.20 - XOR ASCII file for Backpropagation and CNM learning

3.2.6.1 Backpropagation domain modeling for the XOR problem

The Backpropagation ANN is modeled with two input neurons and one output neuron
to solve the given XOR problem, so that it is necessary to model the evidences and
hypothesis in order to represent this ANN structure. One Hypothesis instance and two
Evidence instances are created as described in Figure 3.21. The Backpropagation netGenerate()
method will be able to interpret this domain and create one output neuron associated to the
hypothesis and two input neurons, each one associated to each evidence.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 108

 Hypothesis Output
ASCIIEvidenceFetcher from = 4, to = 4
NumericAttribute Output
Related Evidences = Input1→I1; Input2→I2

Evidence Input 1

ASCIIEvidenceFetcher from = 0, to = 0
NumericAttribute I1

Evidence Input 2

ASCIIEvidenceFetcher from = 2, to = 2
NumericAttribute I2

Figure 3.21 - Modeling XOR Domain for Backpropagation

One hypothesis called �Output� is created with fetcher getting the data on the fourth
column of the learning file. It has a numeric attribute that converts the read data from the file
into its numeric value. The associated output neuron will request this value under demand.
The related evidences indicate which ones must be considered to build the ANN architecture
to the given hypothesis. In case of the Backpropagation, both evidences are considered for
the construction of the ANN that leads to the output neuron.

The two created numeric attributes of the two evidences fetch values on columns 0 and
2 of the ASCII file. The neurons of the Backpropagation hidden layer are created based on
the configuration value entered by the user at run-time. They will be appropriately connected
to the created input and output neurons.

3.2.6.2 CNM domain modeling for the XOR problem

The CNM is modeled with four input neurons and two output neurons to solve the
given XOR problem. Two Hypothesis instances and two Evidence instances are created as
described in Figure 3.22. The possible output values are modeled on the CNM as symbolic
values �Yes� or �No�, meaning two possible hypotheses for the problem. Therefore, two
Hypothesis instances are created. The fetchers for both Hypotheses are once again configured
to get the values on the fourth column of the ASCII file. If the value is zero, the �No�
hypothesis is considered the winner, if the value is one, the �Yes� hypothesis wins. Those
values are fetched by the CNM output neurons whenever necessary during the learning
process.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 109

The attributes of the created evidences are considered for the modeling of the input
neurons. CNM considers one input neuron for each modeled attribute. For instance on the
problem domain at hand each input can assume the two Boolean values one or zero. Those
values are also considered by the CNM as the symbolic values �Yes� or �No�. One attribute
must be built for each evidence in order to model the two possible values. One CNM input
neuron is created for each attribute. Therefore the CNM will have four input neurons and
two output neurons to the XOR problem.

The CNM netGenerate() method will be able to interpret this domain and create the two
output neurons associated to the hypothesis string attributes and four input neurons
associated to each string attribute of the modeled evidences.

Hypothesis Yes
ASCIIEvidenceFetcher from = 4, to = 4
StringAttribute Yes; string = “1”
Related Evidences = Input1→Yes; Input1→No; Input2→Yes; Input2→No

Hypothesis No

ASCIIEvidenceFetcher from = 4, to = 4
StringAttribute No; string = “0”
Related Evidences = Input1→Yes; Input1→No; Input2→Yes; Input2→No

Evidence Input 1

ASCIIEvidenceFetcher from = 0, to = 0
StringAttribute Yes; string = ”1”; morbidity = 0.9
StringAttribute No; string = ”0”; morbidity = 0.9

Evidence Input 2

ASCIIEvidenceFetcher from = 2, to = 2
StringAttribute Yes; string = ”1”; morbidity = 0.8
StringAttribute No; string = ”0”; morbidity = 0.8

Figure 3.22 - Modelling XOR Domain for CNM

3.2.7 Coupling Domain, ANN and simulation frameworks together

As it was already described, the class Project contains a list of Domain instances. Each
such Domain instance is implemented in the way explained in Section 3.2.6 above.
Consequently a Project may have many domain problem models, that means, modeling of the
same problem domain in different ways and/or modeling different domain problems. The
Project also contains a list of NetManager instances that represent the ANN models that shall
be simulated in order to solve the modeled domain problems. Each instance of a
NetManager can handle only one domain problem.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 110

-Evidences : Object
-Hypothesis : Object

Domain

1

-has

1

+generateNet() : int
+startLearn()
+restartLearn()
+createNetImplementation()
+createFrameNeuralNetwork()
+run()

#domain : Domain
#netImplementation : INetImplementation

NetManager

Figure 3.23 - NetManager is associated to a Domain instance

Figure 3.23 shows the relation between NetManager and Domain classes. The NetManager
contains a Domain instance cloned from the list of modeled domains in the Project. The
Domain instance is cloned because more than one ANN instance may use the same Domain
model at the same time. The appropriate solution for this problem would probably be
implementing transaction synchronization at the level of the simulation framework. Such a
solution is much more complex so that simply cloning the Domain warrants that each ANN
accesses the data via a separate control structure.

-name : String
-activation : float
-evidence : IEvidence

Attribute

+compute()
+generateSynapses() : int

-computationStrategy : ComputationStrategy
-currentActivation : int
-attribute : Attribute
-incomingSynapsis : Object

Neuron

1

-has

1

Figure 3.24 - Neuron fetches activation from its associated Attribute instance

The specific NetManager class implements how the ANN treats the modeled domain to
build the appropriate ANN architecture. Each ANN model presumes modeling the domain
in a determined way in order to properly perform the learning. Besides this, the constructed
ANN structure will have relationships to the Domain in order to be able to fetch the learning
and testing data whenever necessary. Typically the output neurons will have relations to the
hypothesis attributes objects and the input neurons to the evidence attributes objects. Figure
3.24 shows the relations among those classes.

3.2.8 The ANN GUI framework

A complete simulation environment was built to facilitate the simulation of ANN. In
this environment, a project can be created to manipulate different instances of ANN�s and

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 111

domain problems. A complete explanation for the CANN simulation environment
characteristics can be found in Chapter 7.

The whole simulation GUI environment was also built based on the design principles
that lead the development of the frameworks so far. Special dialogs for manipulating the
creation of the domain data such as the hypothesis and evidences, and the runtime adding
and creation of different ANN instances. Besides those, a small GUI framework was built for
handling the ANN main functionalities: The ANN GUI framework.

The ANN GUI framework implements a small set of Java GUI components that group
general ANN activities such as learning and testing data. The built GUI components are
intended to be general for any type of ANN. Figure 3.25 shows the main GUI elements
created for the ANN manipulation. It shows a class called FrameNeuralNetwork that
implements a Java Frame class. FrameNeuralNetwork contains an instance of a NetManager, so
that it is able to control the execution of any ANN component implemented on the CANN
framework.

-netManager : NetManager
-dialogLearn : DialogLearn
-dialogConsultCaseBase : DialogConsultCaseBase
-dialogConsultUserCase : DialogConsultUserCase
-dialogConfig : DialogConfig
-dialogMoveSimulation : DialogMoveSimulation

FrameNeuralNet

1

-has

1
+generateNet() : int
+startLearn()
+restartLearn()
+createNetImplementation()
+createFrameNeuralNetwork()
+run()

#domain : Domain
#netImplementation : INetImplementation

NetManager

Figure 3.25 � GUI framework

FrameNeuralNetwork has a set of dialogs to manipulate an ANN instance execution:
DialogLearn for controlling the execution of the ANN learning process; DialogConsultCaseBase
to control the execution of the ANN testing based on a set of cases; DialogConsultUserCase
allows the testing of an ANN given one case built at runtime by the user through this GUI;
DialogMoveSimulation allows the user to make use of the mobility characteristic of the ANN
instances and move it to a remote computer, this dialog is not obligatory; and DialogConfig to
control the ANN configuration parameters. This dialog is an abstract class and its concrete
classes are specifically implemented for each ANN model once the configured learning
parameters are different for each ANN model.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 112

Figure 3.26 shows the FrameNeuralNetwork frame instance. In this case, it is running a
Backpropagation instance called �BP 1�. The menu �Neural Net� provides the possibility to
configure the inner ANN component, reset (meaning creating a new network structure), save
the neural network instance and close the frame. The menu �Simulate� gives the alternatives:
move the ANN component to a remote machine using the mobility characteristics explained
in Chapter 5; perform the network learning; and perform the network testing. At the bottom
of the dialog there is a status bar that in this example is explaining that the ANN instance is
created and running at the local host at port 7000 where the Voyager ORB server is running
(see Chapter 5 for details on the Voyager implementation).

Adicionar os menus abertos e referenciar como a e b abaixo.

Figure 3.26 - FrameNeuralNetwork containing a Backpropagation ANN instance

Figure 3.27 shows the DialogLearn class. In this example the Backpropagation network
was generated for the given XOR domain problem in 20 milliseconds. The learning was
performed for the XOR problem as well and succeeded at 144 epochs taking 1182
milliseconds. In this dialog the user can generate new nets, start, stop and restart the learning.
The learning is performed based on an ASCII file that was already defined by the
implemented Fetcher at the ANN associated Domain instance.

Figure 3.28 shows a DialogConsultCaseBase instance with a case base formed by the XOR
problem cases being tested by the Backpropagation ANN. The test is performed based on an
ASCII file that was already defined by the implemented Fetcher at the Domain instance as well
as the learning. The cases show the input values for I1 and I2 (Input 1 and Input 2 evidences
and I1 and I2 attributes of the evidences), meaning zero for false and one for true. The ANN
output result is a numerical value between 0 (false) and 1 (true). The Figure shows the

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 113

network performing properly for the first three cases. In this dialog it is possible to start,
stop, restart and reset the testing of the case base.

Figure 3.27 - DialogLearn performing the learning of the XOR problem

Figure 3.28 - DialogConsultCaseBase performing the testing of the XOR problem

Figure 3.29 shows the DialogConsultUserCase class where the user has the chance of
building a case to be presented for the ANN at runtime. In that case, the user did not select
the Input 1 meaning that this input evidence must have value zero (false) as activation. The

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 114

selected Input 2 will have activation 1 (true). The evaluation of this case to the XOR learned
Backpropagation network gave the output result of 0.866 that is a value next to the value one,
meaning (true).

Figure 3.29 - DialogConsultUserCase performing the testing of a user case

Figure 3.30 shows a concrete sub-class of DialogConfig, the BPDialogConfig. The
BPDialogConfig implements a Java Dialog where the user can choose the appropriate learning
parameters for the Backpropagation ANN instance. As already explained before, this dialog
must be implemented for each different ANN model.

Figure 3.30 � BPDialogConfig class for the Backpropagation configuration

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 115

Figure 3.31 shows the DialogMoveSimulation class that implements a Java Dialog where
the user can specify a host IP where to move the ANN instance.

Figure 3.31 � Moving the ANN component to run in a remote machine

The GUI components shown here are extensively used on the CANN simulation
environment. They were built in order to form a basic GUI framework where the ANN
programmer can use the GUI classes as they are and concentrate on the implementation of
the ANN component. New ANN models can be easily added to this GUI framework in
order to test its inner implementation.

3.2.9 Packaging the frameworks in reusable components

 �Components are units of deployment� (Clemens Szypersky 1997). Szypersky phrase
focuses on the main reason for building components, the deployment of software. The core
idea is that a component is any piece of software that can be delivered as a single unit and
reused in systems other than the one it was planned for. In that way a component may be a
class, a procedure, a module, etc. The software reusability capacity is directly related to the
quality of the design and implementation of the software pieces.

In this work the deliverable pieces of software are organized in classes and small
frameworks that can be deployed and reused by a third party in order to solve problems
involving ANN development. The created components were built in Java and packaged as
JavaBeans, the components standard for the Java language. It was an important goal of this
work to be able to provide the CANN components in a standard that other people have been
adhering to, so that the components have a critical mass to use them. At the same time, it is
not the intention of this work to compare different component standards or to provide the
CANN components in other component standards. However, this work could be done in the
future given the maturity of one or another component standard.

The actual CANN framework implementation has some coding dependencies among
the frameworks like the ANN and Domain framework or even the GUI framework.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 116

However, the developer that understands the code done so far is able to reuse each of the
frameworks individually. To evolve in order to reach a blackbox reuse level the CANN
framework still has to mature. As mentioned before, there is the possibility of some design
review in order to improve reusability especially at the level of the simulation and GUI
frameworks.

The CANN framework not only permits the reuse of source code but also the
architecture design. The degree of reusability expected is then even bigger than considering
only code reuse. For instance when developing the different ANN models in CANN,
frameworks like Domain, Converter and GUI can be reused while code extension is
necessary only to implement the specific characteristics of the ANN model at the level of
ANN and Simulation frameworks, but keeping their architecture design as well.

Code mobility in the form of objects or agents is an open problem in the component
research area. There are no clear architecture standards and design patterns that facilitate the
design and implementation of general solutions for component mobility. Chapter 5 explains
the design of a solution for making the CANN components for ANN mobile. The main
design guidelines and implementation issues may be applied not only to ANN components
but also to any other kind of components.

Two important aspects on the implementation of components were introduced quite
late in the CANN implementation so that they still lack improvement. The first is the use of a
tool for the proper documentation of the source code. In this case, the Javadoc technology
was adopted. The second aspect is code versioning control. It is very important to keep the
code under the guard of a versioning control system. It helps not only to keep the
appropriate version relation among the components but also to track its design evolution.

The development of the CANN framework may still evolve in some aspects. It is
important to introduce a better error control and logging where the error levels may be better
managed. There are Java API�s that can help with that implementation aspect such as the
Log4J (Log4J Project). It is also important to build and/or find testing tools to test the
components individually. The possibility of quickly creating tests for the new or extended
components in order to verify the errors before coupling the components in a complete
application helps the components developer. This kind of test reduces drastically the
application errors. An interesting tool to be developed is also a RAD (Rapid Application
Development) environment where the developer can quickly program by composition of the

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 117

CANN components. Such a tool may be useful not only for somebody who wants to apply
ANN but also for didactic purposes.

The next section analyzes how other authors approached the problem of designing and
implementing ANN software, and how they relate to the CANN framework.

3.3 Related Work

This chapter introduces a selection of software solutions for the construction of
ANNs. The study of these solutions was important to consolidate the author�s knowledge for
the proposition of a software solution based on components. This study considers how the
different solutions take care of design aspects such as modeling the ANN structure and
implementing its functionality. It also considers how the different authors implement general
code to be used by different models and by other people; in short, what the authors choose
to be the reused code, and how it was engineered. It also analyzes simulation problems, such
as memory and CPU allocation, implementation parallelism, etc.

The first studied solution is the simulation software proposed by Freeman and Skapura
(1992). They developed a software simulation environment in Pascal. Then, attempts to
develop ANN software based on the object-oriented paradigm are analyzed in particular the
works of Timothy Masters (1993), Ivo Vondrák (1994) and Joey Rogers (1997). Masters
centers his work on giving tips on how to implement ANN different functionality in C++.
Vondrák�s work is fully concentrated on designing a fully object-oriented solution to ANN
software implementation. His language of choice was Smalltalk. Finally, Rogers also
concentrates on designing object-oriented software to implement diverse ANN models in
C++.

3.3.1 The Freeman and Skapura (1992) solution

In their work, Freeman and Skapura attempt not only to explain the ANN mathematics
but also to give solid examples on how to implement ANNs. Undoubtedly they succeed on
this task by offering a complete software solution for ANN development. The code is written
in Pascal and is clear and precise. The authors propose two forms of organizing the ANN
data structures: based on arrays and based on linked-lists. Each solution has its advantages
and disadvantages. Both are analyzed in detail in this section.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 118

3.3.1.1 Array-based ANN structures

In such a solution, data is arranged by groups of linearly sequential arrays, each
containing homogeneous data, such as sequential arrays containing connection weight values
or neuron activation values. In the first case, each index of the array corresponds to a
connection and in the second case each index corresponds to a neuron. This approach is
useful to be fast in stepping through the neurons or connections once they are �represented�
by simple indexes in arrays, and stepping over array indexes is fast. This approach is faster
than using linked-lists (next section) where an address lookup has to be accomplished for
each step. The drawback of such a solution is the lack of generality in regard to the size of the
allocated networks.

Figures 3.32 and 3.33 show how to map the ANN structure into arrays. The first figure
shows a two-layer network where the lower layer of neurons produces individual outputs.
Note that each neuron produces an output that is referred by O and indexed by a neuron�s
sequential number. The connection weights among the lower and the upper layers are
represented by W and indexed by the lower and upper neurons it connecs. The lower
neurons are represented by the numbers from 1 to 5 and the upper neurons by the variable i.

W i 1 W i 2 W i 3 W i 4 W i 5
O 1 O 2 O 3 O 4 O 5

i 1 2 n - 1 n

Figure 3.32 � Two-layer network weigh and output arrays (Freeman 1992)

Wi1

Wi2

Wi3

Wi4

Wi5

weights i

O1

O2

O3

O4

O5

outputs

Figure 3.33 � Array data structures for computing neti (Freeman 1992)

The array-based architecture can be described as follows:

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 119

• Each layer of neurons is represented by an array that stores its output. That is,
for each neuron output there is one position on the array that stores it. The
array index means the neuron index.

• Each neuron output connects via a synapse to the neurons of the next layer.

• Each neuron of the next layer will receive the outputs of the previous layer as
input.

• For each neuron of the receiving layer, there will be an array of weights. This
array will have exactly the same size of the previous array of outputs.

The sum-of-products (neti) is done in the following way:

1. Iterate over the two arrays operating the product of each weight value with the
corresponding output value (take the values using the same array index).

2. The resulting product is stored in an auxiliary accumulator that must have been
previously initialized to zero.

3. Then the next index is considered and the same operation is done. The weight
is multiplied by the output and the result is summed to the accumulator value.

4. After iterating over all possible indexes (neurons), the calculation is finished.

The operations over those arrays are based on indexes. As the arrays are statically
allocated, the index iteration is, in fact, simply a pointer increment on the memory, being a
pretty fast operation.

It is clear that such a solution means building specific arrays for the specific ANN
model in development. Also it is necessary to program-by-hard the relations among the arrays
to form the proper model architecture. This solution is certainly not difficult to develop and
may have good performance results, but it is not flexible for modifications. Any change of
the model architecture may mean programming modifications at the level of the arrays
constructions and relationships. Furthermore, the ANN cannot increase in size at runtime.
All the necessary memory has to be allocated in advance. There are ANN models that can
change in size dynamically (e.g. the CNM model), which makes this solution impractical.
Sometimes the memory usage of an ANN model cannot be forecast. If the previously

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 120

allocated memory is excessive, not being totally used, a waste of resource will be
characterized. If the allocated memory is not enough, the process may be stopped in the
middle, being a waste of time.

Another problem is that if the neurons of different layers are not fully connected, this
solution will not work properly. For the connections that are not used it is necessary to
introduce controls like indexes or consider connections (array positions) with null value. The
sparser the net is or turns to be during the learning, the more losses in memory spaces and
processing time will occur. The implementation turns out to be restrictive and complicated to
extend.

3.3.1.2 Linked-list-based ANN structures

Here the arrays describing the neuron weights or the neurons layer outputs are
implemented using linked lists. Each element on the list points to the next element. The
elements can be allocated at run time making lists of any size possible. The connections
among the different layers of the network may be also implemented via pointers and different
approaches can be used to correctly build the architecture. Connection lists can be built to
indicate to which inputs in an upper layer the output list neurons must be connected.

Such a solution brings the advantage of generality on the architecture implementation
and processing, once any ANN model can use the list navigation algorithm. But the
disadvantages are twofold in relation to the array-based solution:

• It allocates more memory to store the list pointers

• It consumes more processing time by having to navigate over the links to
access the data structures.

Freeman then chooses to have arrays as data structures, but dynamically allocated, so
that the arrays can be allocated at run-time, but their size is fixed once allocated. The
advantage is also that the iteration inside the array is done via index, keeping the array
performance quality.

Figure 3.34 shows the layered structure that is used to model a collection of neurons
with similar function. The first neuron computed output value is stored in its correspondent
output index (O1) on the outputs array. The weight values of all input connections to the first
neuron are stored sequentially in the W2j array. Those values are accessed to calculate the O1

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 121

output. The same happens to the other neurons in sequence. The neural network will manage
as many layer arrays as necessary to implement the ANN structure.

W11

Wi2

Wi3

Wi4

Wi5

W21

Wi2

Wi3

Wi4

Wi5

W31

Wi2

Wi3

Wi4

Wi5

W41

Wi2

Wi3

Wi4

Wi5

weights

O1

O2

O3

O4

O5

outputs

c1

c2

c3

c4

c5

weight_ptr

layer

W11

W12

W13

W14

W15

Figure 3.34 � Layered structure (Freeman 1992)

A 4x5x2 Backpropagation network can be taking as an example. It may manage three
arrays for the input, hidden and output layers. The input layer would have only an outputs
array since it does not have connections to a previous layer. The output values (4 values)
would be filled with the input activation and are used to calculate the activation of the hidden
neurons. The hidden and output layers would have an array of outputs and an array of weight
pointers (weight_ptr) as seen in Figure 3.34. Each position of the weight_ptr array points to an
array of weights. The number of positions on the weight_ptr array corresponds to the number
of neurons on the layer (5 to the hidden layer and 2 to the output layer). The number of
weights stored on each weights array corresponds to the number of connections each neuron
of this layer has to the previous layer. In the example the hidden layer would have 5 elements
on the outputs and weight_ptr arrays. Each weight array would have 4 weights corresponding to
each connection to the input neurons. Similarly, it would happen to the output layer. It would
have 2 elements on the outputs and weight_ptr arrays corresponding to its output neurons. Each
weight array would have 5 weights corresponding to each connection to the input neurons.

However, Freeman and Skapura do not focus on analyzing the two solutions in order
to verify how much one is better than the other. Their preoccupation is to show what must

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 122

be done to simulate ANN and not how to implement the models. The empirical comparison
of two methods such as those ones is not necessary in this work too. The work effort would
be too high to find out results that can be easily forecast by previous knowledge on
programming similar solutions for ANN building.

The simulation based on vectors and matrixes has as advantage the fact that this kind
of computation is widely used in scientific computation. Many computers have special
hardware to process vectors like supercomputers that operate very efficiently with long
vectors at the same time. As the ANN processing is massively parallel, it is possible to define
parallel algorithms to make use of this computer capability. However, the main disadvantage
of such a solution is the reduced reusability. The structured programming approach presented
here has its inherent difficulties, such as the necessity of reprogramming parts of the code in
order to be able to implement new algorithms, ANN models, learning rules, data interaction,
etc.

3.3.2 The Timothy Masters (1993) solution

In his book �Practical Neural Network Recipes in C++�, Timothy Masters intends to
address ANN beginners. The book quickly explains the several ANN paradigms introducing
the mathematical aspects and briefly shows code examples for the relevant aspects. The
coding is done in C++ and, in general, is formed by code pieces of the structured
programming stile.

The author does not apply OO aspects in the software implementation. There aren�t
detailed explanations on the design used to implement the several models. He who wants to
have more details about the implementation has to wade through to the full source code that
comes with the book in an additional floppy disk. But this code is also not properly
documented. There is a simple user�s manual that helps to run the software and provides few
code comments. Therefore, the study of the core implementation aspects turned out to be
complicated.

Masters has defined a general top-level class for ANNs, called Network. The ANN
structure is built in memory and as the implementation is done in C++, the programmer has
to manage memory. Particular ANN methods are the following few ones:

1. learn � do the learning process.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 123

2. trial � calculate the output for a given input by evaluating the network.

3. trial error � compute the training set error.

It also implements save and restore methods for making the ANN structures persistent in
file streams. It is possible to see in CANN INetImplementation class methods that implement very

similar functionality to those above.2

There are two subclasses of Network: LayerNet and KohNet. The first is the basis for
building different multilayer-based ANN models. The second implements the Kohonen
SOM model (Kohonen, 1984). Both subclasses have some methods for specific model
computations such as �finding gradient� in LayerNet and �winner� in KohNet.

There are only two other classes for the whole simulation environment: TrainingSet and
SingularValueDecomp. The first implements the management of a collection of samples, which
will be used for training. This functionality is important and the author shows, by
implementing a separate class, the necessity of having it independent of the core ANN
classes. The LayerNet class for the implementation of the regression algorithm uses the
second. This class is completely out of the scope of the whole design. It implements
something specific for a particular ANN model and is not important for the rest of the code.
In most cases the author chooses to implement model particularities inside the specific
subclasses of LayerNet. The SingularValueDecomp class is isolated and shows lack of designs
and clarity of the system.

The absence of more fine-grained classes to implement the ANN models and the
presence of only few �virtual� (abstract) methods on the Network class shows that the design
chosen by Masters is not much concerned with reusability of code. Most of the essential parts
are coded inside each ANN subclass and not many can be reused. For example: the author
implemented several mathematical functions in methods inside the specific ANN models
such as: weight regression, simulated annealing, sigmoid function, gradient descent
calculation, etc.

Furthermore, if a careful reuse design approach had been done, certainly some code
could be made generic by improving the interface of the top-level class Network. For example,

2 In Cursive character type the author comments that compares somehow the related work with CANN.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 124

methods that manipulate weights of retrieve network results (winner), could be implemented
in the generic class Network and be useful to other ANN subclasses.

On the other hand, some code could be moved to specific subclasses such as the
confusion method in the class Network, which certainly shouldn�t be there. The confusion is a
method to help in classification networks, so that it could be added to a subclass that
specifically groups networks that would be able to use it or need it. A class could be created
to implement this facility and referred by any ANN that would use it.

If considering OO design, Masters approach can be considered a further step in
relation to Freeman that did not implement OO aspects. But his approach is still not mature
in terms of OO design. Unfortunately, the comments on the code are not enough to have a
clear understanding about the meaning of certain attributes and methods, and sometimes
even some classes. It is not possible to make a profound analysis of the implementation
within a reasonable amount of time but it is clearly few steps behind of being characterized as
OO design and implementation. Finally, the author does not provide any design diagrams,
the defined classes are few compared to the problem at hand, the methods are not generic to
the classes that contain them, the code is organized as libraries of structured code, not as
objects.

3.3.3 The Ivo Vondrák (1994) solution

In his papers (Vondrák, 1994, 1994a), Ivo Vondrák makes a parallel between the OO
concept of message exchange among objects via appropriate methods usage and the
exchange of information at the ANN. The collection of messages an object is able to react to
forms its supported protocol. The ANN has a similar behavior where the nets have neurons
that communicate to each other by signals transmitted by the connections among them.
Therefore, Vondrák�s conclusion is that an ANN can be mapped into a computer model
using the OO paradigm.

Analogous to CANN, that OO solution resembles the objects in an ANN. Vondrák
proposes objects to represent neurons, the interconnections among them, the layer of the
connected neurons and the whole network. The operations on these objects represent the
ANN tasks such as passing the signal, adaptation, self-organization and changing the
topology. A hierarchy of classes is built to represent the various types of objects originated
from the various ANN models to implement.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 125

3.3.3.1 Hierarchy of Neurons

The hierarchy of neurons is shown in Figure 3.35. Neuron is the top class, its subclasses
define special behavior for different ANNs. The code that defines a Neuron is shown in Code
3.6.

Neuron

BinaryNeuron KohonenNeuron RandomNeuron SigmoidalNeuron

BipolarNeuron AdaptiveNeuron

IntervalNeuron

Figure 3.35 � Neuron hierarchy (Vondrák 1994)

The Neuron class stores data necessary to compute its activation. The abstract method
that does the activation calculation is called transfer. The subclasses of Neuron implement this
function in the appropriate way regarding its ANN model. Here Vondrák chooses the
unification metapattern (Pree, 1995) where the different behaviors of the Neuron types are
implemented by a method that, is dynamically bound and that reacts in different ways in the
different Neuron subclasses. Whenever a different behavior is necessary, a new subclass of
Neuron shall be implemented. The remaining methods described in Code 3.6, are
implemented operations that are general to all Neuron types. One method is used to initialize
the neuron (initialize), another to add a signal to the neuron activation calculation
(adjustPotential) and, finally, a method is implemented to check the actual neuron activation
(getState).

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 126

Code 3.6 � The Neuron class (Vondrák 1994)

class: Neuron
superclass: Object
data elements:
 potential “inner potential”
 state “state of the excitation”
 threshold “threshold of the neuron”
 name “represented by number”
message protocol:
 initialize: aName “initialization of the neuron and setting a name”
 adjustPotential: aFloat “add an input signal to the potential of the
neuron”
 transfer “abstract method for the activation function”
 getState “returns the state of the neuron”

Some Neuron types need to introduce other messages in its communication protocol,
that means introducing new methods to perform activities specific to the ANN model it
belongs to. In this case, once again the solution is to do subclassing. The subclasses will
introduce the new method not implemented by the superclass. It is the case of IntervalNeuron,
which introduces the method transferInterval to implement the possibility of assigning a state
of excitation to the neuron controlled by an interval via its data elements minState and
maxState.

3.3.3.2 Hierarchy of Connections

The connection between neurons is used to pass signals from one neuron to another. It
also represents the first level of the topology of neurons defined by Vondrák. The
implementation of the Connection class can be seen in Code 3.7. The Connection object stores
the synaptic weight and references to the neurons it is connected to. Connection has a method
to initialize it, a method called adjust to update the weight value and a third method called
passSignal used to transfer the signal from the �first� to the �second� neuron connected to the
Connection object. It is interesting that this connection is directional from one neuron to the
other, from the first to the second, so that Vondrák�s model does not take into consideration
that a connection could be bi-directional, even though it has the information about the two
involved neurons on the connection.

It is not clear whether it would be easy to change this �semantics� (direction) of the
connection. Anyway the processing in the reverse direction, from �second� to �first� neuron
could be done by overwriting the passSignal method or by defining a new method, in a
Connection subclass, similar to passSignal but in the opposite direction. At least the ANN
developer could create two connections, one from the �first� neuron to the �second� and the
other from the �second� to the �first� neuron.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 127

Code 3.7 � The Connection class (Vondrák 1994)

class: Connection
superclass: Object
data elements:
 first “first neuron from the couple of neurons”
 second “second neuron”
 weight “weight of the interconnection”
message protocol:
 initialize “initialization of the connection”
 adjust: aFloat “adjust a weight”
 passSignal “pass a signal from the first to the second
neuron”

There is one Connection subclass called IntervalConnection which implements the same
behavior defined for IntervalNeuron where an interval state of excitation is possible. A new
method passIntervalSignal is added to implement this behavior.

Finally, it is possible to say that Vondrák�s Connection class is appropriate for the
simplicity of its behavior.

3.3.3.3 Hierarchy of Interconnections

The class called Interconnections represents a set of connections among neurons defining
a part of the whole neural network. Code 3.8 shows the implementation of this class in detail.
The main role of this class is to determine the way the neurons shall be connected, thus being
dependent of the specific ANN model. The class stores a dynamic collection of Connection
objects. Similarly to the Connection class, it has the methods adjust and passSignal that have the
same functionality yet applying it to the collection of connection objects it holds.

Code 3.8 � The Interconnections class (Vondrák 1994)

class: Interconnections
superclass: Object
data elements:
 connections “dynamic collection of the connection”
message protocol:
 initWeights “initialization of the weights of the connection”
 adjust “adjust weights of interconnections”
 passSignal “pass a signal between neurons”
 add: aConnection “add a connection”
 remove: aConnection “remove a connection from the collection”

The subclasses of Interconnections implement the concrete solutions for the methods
adjust and passSignal. Therefore, the hierarchy shown in Figure 3.36 is created. The subclasses
also add specific methods to do the appropriate creation of the object and the appropriate
connections, such as the method connect.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 128

Interconnections

InterBAM InterHopfield InterMulti

InterBP

InterBPInterval

Grossberg Kohonen

Figure 3.36 � Interconnections hierarchy (Vondrák 1994)

There is no class such as the Interconnections in CANN. The creation of the ANN structure is

the responsibility of the components that implement INetImplementation interface (see Section

3.2.2.4). They shall implement the abstract method generateNet that is called when the ANN must be

built. Each specific component implements this method in its appropriate way. At first sight, the

Interconnections object did not seem to be important, but with the experience of implementing four

different models using the CANN framework, it is clear that it makes sense. The Interconnections plays

the role of the concept of an ANN layer and is a possible element of code reuse. The creation of layers of

interconnected synapses and neurons makes sense for all models and the code implementation is very

similar to the differently implemented models. In CANN the grouping of sets of neurons is done using

the Java Vector class and the Neuron class controls the connection among neurons. A class like

Interconnections can encapsulate this functionality avoiding repetitive code such as interacting over

the neurons vector.

3.3.3.4 Hierarchy of Artificial Neural Networks

Figure 3.37 shows Vondrák�s class hierarchy for ANNs. The class NeuralNet is the top
class and its code is shown in Code 3.9. This class is responsible for putting together the
layers of Interconnections to define the ANN topology. Its subclasses implement complementary
methods to provide management for the functionality among the interconnections.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 129

NeuralNet

BAM HopfieldNet MultiLayeredNet

BPNet

PABNet

BoltzmanMachine CounterPropagNet

KohonenMap

IntervalPABNet

RandomBAM

Figure 3.37 � Neural Network hierarchy (Vondrák 1994)

The NeuralNet class implements two important methods: learning and run. The method
learning is responsible for the adaptation functionality of the model by implementing the
learning procedure for a training set. The method run is simply a recall information method,
which means, it is used to test the previously adapted network with one case. The learning
method receives as parameter aTrainingSet and the run method receives anInput. It is not
possible to exactly infer from the text what those data types are, but they certainly are objects
that implement some functionality that the NeuralNet subclasses are able to cope with. Those
objects can have, internally, training or testing data already pre-processed or not to be applied
to the ANN. This means that the NeuralNet objects can also do the pre-processing of data
before applying it to the ANN structure (e.g. adjust method for interconnections).

Code 3.9 � The NeuralNet class (Vondrák 1994)

class: NeuralNet
superclass: Object
data elements:
 inter “dynamic collection of the interconnections”
message protocol:
 initNet “initialization of the neural net”
 learning: aTrainingSet “adaptation of the network”
 run: anInput “recall the information”

Vondrák points out that the advantages of using the OO approach to build ANN
software are �the direct reincarnation of the real nets into the computer model and the
possibilities to reuse the already written code.� Also �the possibility to redefine or to extend
hierarchies and adapt them for the solution of the concrete problem.� He finally points to the
higher reliability of the code.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 130

Even being the consulted material not extensive, it is clear that the design is elegant and
promises to be a generic software solution for implementing ANN.

3.3.4 The Joey Rogers (1997) solution

In his book �Object-Oriented Neural Networks in C++� (1997), Joey Rogers probably
wrote the most detailed publication so far about implementing ANN using the object-
oriented paradigm. Rogers uses OO programming techniques �to find the inherent object
nature found in all neural networks to create a flexible set of reusable classes that simplifies
the implementation of any NN architecture. The gain one should have is not only a tool
chest of reusable objects to aid in the implementation of NN architectures, but learn the
development process for creating such objects and realizing any new architecture.�

This inherent object nature is the presence of neurons and connections among
neurons, the synapses. So Rogers (1997), like Vondrák (1994) already did, built these basic
ANN elements as objects and reused them for all implemented models.

Rogers starts by implementing two base ANN classes: Base_Node and Base_Link. Those
classes should have all functionality needed by any ANN model so that the programmer does
not need to implement it again. The implementation of one model follows the other; the
objects created for one are reused in the others.

3.3.4.1 The Base_Node Class

The principal characteristics of the Base_Node class are:

1. It processes input and produces output.

2. It does not define how the node object processes information; the task is done
in the subclasses.

3. It maintains lists of connections to the associated nodes. Two linked lists are
used to store associated nodes: one maintains the nodes that bring input to the
node, the other the list of nodes that receive the output of this neuron.

The Base_Link objects (explained later) do the connections among Base_Node objects.
The Base_Link objects store two pointers, one to the source and one to the destination
neuron. Therefore, the Base_Node objects point only to the links. Figure 3.38 shows an
example of network formed by Base_Link (rectangles) and Base_Node (circles) objects.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 131

The creation of those links will generate an additional overhead that is softened by the
flexibility of creating any architecture and the functionality capability associated to this
structure once the Base_Link objects also store the connection weight and can process
information.

The CANN Neuron class (see Section 3.2.2.1) does not have a list of input and output

connections. It has only one list of input connections, e.g. a list of synapses that bring activation to the

neuron. The neuron does not need to know what neurons are associated to its input because each

synapse connected to it knows its source and destination neurons. There is no list of synapses associated

to the neuron output. Once the synapse knows to which neurons it is associated, it is able to request the

neuron output value whenever necessary. The list of synapses is maintained by Neuron as a Java

Vector object.

Figure 3.38 � Object representation of network topology (Rogers, 1997)

The disadvantage of Rogers� solution is the necessity of managing many pointers.
When implementing in C++ keeping those pointers consistently allocated generates a
programming overhead. The programmer is responsible for allocating and deallocating those
pointers being a highly error-prune solution.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 132

Base_Node

Input_Node Feed_Forward_Node SON_Node

Adaline_Node ADALINE_Network

Base_Network

Bias_Node BP_Node

BAM_Ouput_Node

BAM_Input_Node

BP_Output_Node

BP_Middle_Node

BP_Network SON_Network BAM_Network

Generic_BP_Network BAM_System

Figure 3.39 � Neural Network Node hierarchy (Rogers, 1997)

The Base_Node class hierarchy is shown in Figure 3.39 and its definition is shown in
Code 3.10. The Base_Node stores a set of numeric �values� that is useful to store the results of
any processing done inside the neuron. This set of �values� was created to make the class
generic and to make it useful in several ANN architectures. It also stores �error� results in
the same way. There are getter and setter methods for �values� and �errors�. This class also
stores the node name and ID. The ID is used for certain iteration controls and for the object
serialization.

The Neuron class in CANN does not store a set of values but a single value, which is the neuron

activation called currentActivation. The neurons also do not store name and ID because they are

expensive data in terms of memory footprint. It would be waste of memory space to allocate a string to

the name of each neuron in a CNM network where there could exist millions of combinatorial neurons.

The ID is not necessary once the neurons are stored in Java Vectors, which are classes that have

iteration facilities via indexes. Furthermore, the Java serialization and reflection engines guarantee the

unique access to the objects not being necessary to have IDs to identify them. Another important

contribution of Java is the error handling mechanism that allows a seamless treatment of exceptions in

classes and methods. Therefore it is not necessary to store error codes inside the classes.

Rogers� solution stores learning parameters in the node values instead of storing them
in the ANN model structure. The GetValue and SetValue methods are used to get and set the
necessary learning parameters for all nodes of the model. Sometimes some learning
parameters are, in fact, necessary inside the neuron to be able to do the activation calculation.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 133

However those values should not be stored inside the neurons because it causes a waste of
memory by allocating space for storing the same value as many times as node instances exist.
The natural solution would be to store those values at the ANN level and pass them by
parameter to the nodes whenever necessary.

Base_Node has constructor and destructor methods for allocating and deallocating the
object�s internal variables. It also provides methods for saving its state to the disk - methods
save and load that operate over an iostream, - and a print method to print its state to the
standard IO.

In the Java solution there is no necessity to implement the class destruction method because the

destruction is provided automatically by the Java’s garbage collection engine. It is also not necessary to

implement save and load methods for neurons and connections because the Java Persistence facility

provides this automatically. Classes are only required to implement the Serializable interface in order to

be automatically enabled to be serialized. In this case, instance variables that shall not be persistent

shall be declared transient.

The most important methods defined by Base_Node are certainly Learn, Run and Epoch.
Those methods are abstract so that they are implemented only by the subclasses. The Run
method defines the node operation when evaluating an input in �normal� operation, typically
testing. The Learn method is used during the training process and the third method Epoch is
important for unusual situations to reset values or to do special operations.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 134

Code 3.10 - The Base_Node class (Rogers, 1997).

class Base_Node // Base Neural-Network Node
 {
 private:
 static int ticket;

 protected:
 int id; // Identification Number
 double *value; // Value(s) stored by this node
 int value_size; // Number of Values stored by this node
 double *error; // Error value(s) stored by this node
 int error_size; // Number of Error values stored by this node

 LList in_links; // List for input links
 LList out_links; // List for output links

 public:
 Base_Node(int v_size=1, int e_size=1); // Constructor
 ~Base_Node(void); // Destructor
 LList *In_Links(void);
 LList *Out_Links(void);
 virtual void Run(int mode=0);
 virtual void Learn(int mode=0);
 virtual void Epoch(int code=0);
 virtual void Load(ifstream &infile);
 virtual void Save(ofstream &outfile);
 inline virtual double Get_Value(int id=NODE_VALUE);
 inline virtual void Set_Value(double new_val, int id=NODE_VALUE);
 inline virtual double Get_Error(int id=NODE_ERROR);
 inline virtual void Set_Error(double new_val, int id=NODE_ERROR);
 inline int Get_ID(void);
 inline virtual char *Get_Name(void);
 void Create_Link_To(Base_Node &to_node, Base_Link *link);
 virtual void Print(ofstream &out);

 friend void Connect(Base_Node &from_node, Base_Node &to_node,
 Base_Link *link);
 friend void Connect(Base_Node &from_node, Base_Node &to_node,
 Base_Link &link);
 friend void Connect(Base_Node *from_node, Base_Node *to_node,
 Base_Link *link);
 friend int Disconnect(Base_Node *from_node, Base_Node *to_node);

 friend double Random(double lower_bound, double upper_bound);
 };

The CANN Neuron class has only one abstract method for both Run and Learn operations

defined in Rogers’ Base_Node class because both do the same thing, e.g. calculate the neuron

activation. The calculated activation is the same independently whether the ANN is in the learning or

testing process. There is no similar operation like the one defined by the Epoch method.

In case of the CANN Neuron class, the process of information is not left to the subclasses. The

creation of subclasses of Neuron and Synapse is frequently done to implement the specialties of each

ANN model. But the implementation of the activation function is done in separate subclasses of the

class ComputationStrategy, which avoids the creation of nested subclasses for the same model just

implementing various activation functions. Using the ComputationStrategy solution the activation

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 135

functions could be defined even at runtime by “plugging” in a new instance of a specific

ComputationStrategy. That is the use of the separation metapattern instead of the unification

metapattern.

Finally there are �static� methods called Connect that implement the facility of
connecting Base_Node objects through Base_Link objects. There is also a Disconnect method to
undo such a connection.

The “static” Connect methods defined by Rogers’ Base_Node class are also unnecessary in the

CANN Neuron definition. The connection among neurons is done using a more generic method called

generateSynapses that implements the connection of the input synapses to the neuron in the

appropriate way the ANN model requires. The Disconnect method implemented by Rogers was not

implemented in CANN Neuron class but it is certainly a good idea to have the chance to disconnect

neurons on the fly.

3.3.4.2 The Base_Link class

The Base_Link class hierarchy can be seen in Figure 3.40 below.

Base_Link

ADALINE_Link BP_Link

SON_Link BAM_Link Epoch_BP_Link

Figure 3.40 � Neural Network Links hierarchy (Rogers, 1997)

The Base_Link class definition can be seen in Code 3.11 and has basically the same
methods as Base_Node. It has specific methods to manage connections among its input and
output neurons and to access them. Another extra method Update_Weight is used to update
the stored weight value.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 136

Code 3.11 - The Base_Link class (Rogers, 1997)

class Base_Link // Base Neural-Network Link class
 {
 private:

 static int ticket;

 protected:
 int id; // ID number for link
 double *value; // Value(s) for Link
 Base_Node *in_node; // Node instance link is comming from
 Base_Node *out_node; // Node instance link is going to
 int value_size;

 public:
 Base_Link(int size=1); // Constructor
 ~Base_Link(void); // Destructor for Base Links
 virtual void Save(ofstream &outfile);
 virtual void Load(ifstream &infile);
 inline virtual double Get_Value(int id=WEIGHT);
 inline virtual void Set_Value(double new_val, int id=WEIGHT);
 inline virtual void Set_In_Node(Base_Node *node, int id);
 inline virtual void Set_Out_Node(Base_Node *node, int id);
 inline virtual Base_Node *In_Node(void);
 inline virtual Base_Node *Out_Node(void);
 inline virtual char *Get_Name(void);
 inline virtual void Update_Weight(double new_val);
 inline int Get_ID(void);
 inline virtual double In_Value(int mode=NODE_VALUE);
 inline virtual double Out_Value(int mode=NODE_VALUE);
 inline virtual double In_Error(int mode=NODE_ERROR);
 inline virtual double Out_Error(int mode=NODE_ERROR);
 inline virtual double Weighted_In_Value(int mode=NODE_VALUE);
 inline virtual double Weighted_Out_Value(int mode=NODE_VALUE);
 inline virtual double Weighted_In_Error(int mode=NODE_VALUE);
 inline virtual double Weighted_Out_Error(int mode=NODE_VALUE);
 inline virtual int Get_Set_Size(void);
 inline virtual void Epoch(int mode=0);
 };

3.3.4.3 The Feed_Forward_Node class

This class provides the neuron functionality for implementing feedforward networks.
Those networks generally have nodes that apply a simple threshold function as its neuron
activation function such as the Sigmoid function. From this class Rogers derives the classes
needed for the ANN models implemented later.

3.3.4.4 The Base_Network class

Rogers�s implementation of the Base_Network class can be seen in Code 3.12. It
manages two arrays of Base_Node and Base_Link classes.

That is pretty similar to what is done in the CANN NetImplementation class by implementing

input and output neuron vectors (see Section 3.2.2.4). But there is no necessity of having the control of

the connections (Synapses) in the NetManager class once they are controlled by the Neuron classes.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 137

The methods Load_Nodes_Links and Save_Nodes_Links implement persistence, which is,
once again not necessary in a Java implementation because of the automatic persistence
engine of the Java language. The Base_Network class also has a Create_Network method that is
abstract (virtual) giving to its subclasses the responsibility of implementing the network
specific topology.

The CANN NetManager class that defines the abstract method GenerateNet does the same.

The Base_Network method Load_Inputs is also an abstract method and is used to
standardize the loading of input values into the input nodes. Here Rogers expresses the
necessity of having a standard way of feeding data to the ANN for the learning and testing
processes.

That is what was done by the implementation of the CANN Domain and Converter frameworks

(see Sections 3.2.4 and 3.2.5).

Finally, similar to the Base_Node class, a method is implemented called Epoch to execute
one network operation epoch for all links and nodes. Other methods inherited by Base_Node
such as Get_Value, Set_Value, Save, Load, Run and Learn, are overridden in the
ADALINE_Network class. In general, those operations are extended to cope with the arrays
of Base_Node and Link_Node objects contained in the Base_Network class.

After checking the Base_Network definition, lets recheck Rogers�s class hierarchy for
ANN in Figure 3.37. The BP_Network class implements the Backpropagation model. It could
be derived from Base_Network class, but �to simplify things even further� and �to take
advantage of the operations that have already been defined�, it was derived from the
ADALINE_Network class. Nevertheless, the reason for deriving the BP_Network class from
the ADALINE_Network class is not completely clear, but it is understandable. However,
deriving models like Kohonen�s SOM from the Adaline model is pretty complicated to
understand. Rogers does not explain why he decided to define SON_Network class as a
subclass to ADALINE_Network. He recognizes they are completely different and says
nothing about the possible similarities that could justify his design. Taking a closer look at the
SON_Network implementation, one can conclude that it could perfectly inherit directly from
Base_Network, avoiding the design misunderstanding.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 138

Code 3.12 - The Base_Network class (Rogers, 1997)

class Base_Network : public Base_Node // Base Network Node
 {
 protected:
 int num_nodes; // Number of nodes in Network
 int num_links; // Number of links in Network
 Base_Node **node; // Array of base nodes
 Base_Link **link; // Array of base links

 virtual void Create_Network(void);
 virtual void Load_Inputs(void);
 virtual void Save_Nodes_Links(ofstream &outfile);
 virtual void Load_Nodes_Links(ifstream &infile);

 public:
 Base_Network(void); // Constructor
 ~Base_Network(void); // Destructor
 virtual void Epoch(int code=0);
 virtual void Print(ofstream &outfile);
 virtual char *Get_Name(void);
 };

Clearly the class hierarchy constructed by Rogers does not reflect the real domain,
which makes it difficult to understand, use and extend. The use of OO design in this case
may be more complicated rather than helpful. Going even further, Figure 3.37 shows that
Rogers�s ADALINE_Network derives from Base_Network class that derives from Base_Node
class. This could be read like: Base_Network is a Base_Node; or a network is a node. This design
is unnatural because nobody can see such hierarchy in the domain. Coad and Jourdon (1991)
advise not to use generalization-specialization hierarchies for relations that are not found on
the problem domain. It is simply wrong that a network is a specialization of a node.

The justification of Rogers for such a design is: �Since the Adaline neural network
receives inputs, processes those inputs, and produces an output, the Adaline neural network
itself can be abstracted to the node model.� This justification is not enough since virtually any
computation process implements this functionality of receiving and processing input and
producing output, so that any class could be a subclass of his Base_Node class.

The same kind of problem can be verified in the hierarchies for Feed_Forward_Node and
Base_Link. Rogers derives Feed_Forward_Node class from the Base_Node class, and the
definition for node classes of other models from the same Feed_Forward_Node class. He also
derives SOM_Link and BAM_Link from ADALINE_Link. Both hierarchies do not reflect
the problem domain.

Probably the true reason why Rogers opted for such a design was the possibility of
inheriting attributes and methods (abstract at most), which is not enough. He come up with

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 139

such a design because each model was built on the results of another previously implemented
one. Because of this �sequential� implementation, he tried to reuse as much code as possible
through inheritance, but ended up with an unnatural design.

This approach used by Rogers is certainly not appropriate for building OO systems.
For instance, the class hierarchy would be different if he had chosen to implement the
Backpropagation model before the Adaline model, and so on. His design would be different
also if he had considered many ANN models in advance and built as many general classes as
possible, implementing the commonalties of the several models. Then, the hierarchy would
probably be more general and reusable.

Taking that idea into consideration, it is possible to imagine something similar to
Rogers�s design by considering that ANN and neurons are both learning units. Then, it would
be possible to have more general (simpler) learning units on the top of the hierarchy, such as
neurons, and more specific and complex units behind, such as ANN models.

3.3.5 Final Remarks

This chapter introduces related work that also comes up with generic ANN software
solutions. The main focus here was to understand the design choices made by the authors on
modeling an object-oriented ANN system. Thus the result of the evaluation of these related
works was the possibility to mature a design where good and bad aspects of those related
works were considered. The list below points out some relevant aspects of them that were
considered in the design of CANN:

• The design should reflect the problem domain.

• As performance is an important aspect in an ANN simulation, the classes
should not include extra information that make them unnecessarily big in terms
of memory footprint and also they should be optimized in terms of code
implementation.

• Allocation and deallocation of memory in C++ can be avoided using languages
such as Java and Smalltalk. The drawback certainly is less performance.

• It is an important feature that the ANN structure can be made persistent.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 140

• There must be a way of implementing training set classes to make the
integration of the ANN with the learning and testing data easier.

• Neurons and synapses classes are the basic building blocks for constructing
object-oriented ANN solutions.

• None of the discussed work considers the separation pattern. In general, the
code reusability and flexibility is given by subclassing and overriding methods.

• None of the discussed work takes care of parallel and distributed solutions.

CANN considers all of the above in its design and implementation. For a future
version of the CANN implementation, several ideas can be reevaluated as already cited along
the text.

3.4 Conclusions

This chapter illustrates how the uncompromising application of framework technology
leads to the construction of ANN software with appropriate flexibility. The implementation
of such a framework corroborates that a sound object-oriented design of neural network
components delivers the expected benefits, which could not be provided by a conventional
solution.

An important goal of the component framework development was its usefulness in
different application domains and reusability for different tools. The CANN components
have been used for different purposes in different systems as expected. An early version of
the CNM ANN component was applied to perform credit rating for the Quelle retail
company. The very good results achieved in this work were one of the main motivations for
constructing the CANN simulation environment. The numerical results of this work are not
public domain.

The developed ANN framework, specially the optimized CNM component (see
Chapter 6) was the base for the implementation of the AIRA data mining tool
(http://www.godigital.com.br). AIRA has been applied mainly in the area of personalization
of web sites.

The CANN simulation environment has been applied to weather forecast. In the work
described in (da Rosa et. Al, 2001a and 2001b), it is applied to rare event weather forecasting

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 141

at airport terminals. Rare events are difficult to forecast because, by definition, the experts do
not have extensive experience with such events. Those events may make it difficult for an
aircraft to land or take off, causing many problems like traffic controllers acting under stress
situations, the aircraft having to land at another airport, etc.

Even in an early stage, the CANN simulation environment has been used as a
simulation tool for implementing a VMI solution (Vendor Managed Inventory) for an E-
Business company dedicated to implementing B2B solutions for supermarkets and its
suppliers (http://www.mercador.com).

The framework design has provided flexibility and reliability to those systems. The
CANN framework components expanded from a classificatory system with only one learning
algorithm to the possibility of implementing many different learning algorithms. The design
permits the straightforward application of the different ANN models to different ANN
domain problems. Different data sources are easily coupled with the domain problem at hand
and applied to the ANN learning and testing processes. The design also allowed the
framework to add other implementation facilities such as parallelization and distribution. This
plays an important role to overcome the limitations of hardware that the ANN learning may
face. The Java implementation also permits the necessary platform independence.

The current design and implementation of CANN may be considered as a generic
decision-making system based on neural networks. An ambitious goal would be to enhance
the framework further, so that other decision support problems, like forecasting, can be
supported. Also ambitious would be to allow the implementation of other learning
mechanisms that do not rely only on neural networks, such as machine learning algorithms.

Currently, most excellent frameworks are products of a more or less chaotic
development process, often carried out in the realm of research-like settings. In the realm of
designing and implementing CANN hot-spot-analysis was particularly helpful for coming up
with a suitable framework architecture more quickly. An explicit capturing of flexibility
requirements indeed contributes to a more systematic framework development process.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 142

4 A N N P a r a l l e l I m p l e m e n t a t i o n

One of the main concerns of implementing ANN is to take care of performance
aspects. The software solution shall be carefully developed in the sense that it does its best to
guarantee the ANN performance while performing learning and testing tasks. To improve
the ANN performance, it is necessary to use the hardware platform as much as possible. The
first step in this direction in the realm of the CANN project was to implement parallelism in
the neural network learning and testing mechanisms. With such an implementation, machines
with more than one processor (for instance 2 to 4 processors) improve the network
performance.

The parallel program design in ANN is an important aspect to be considered while
developing a software solution such as the CANN framework. Thus, the goals of exploring
parallel software implementation in this work are twofold:

• To explore the possibility of having a generic parallel solution for the CANN
framework.

• To propose and implement a parallel solution for the CNM.

The first goal is focused on exploring the state of the art in parallel implementations for
ANN in order to understand the best solution for the simulation environment as a whole.
The second goal is specific to the CNM which is an ANN model were parallelism still was
not explored in detail, being a contribution to this model state of the art.

4.1 Introduction

The first step, in order to better understand how to implement parallel ANN solutions,
is to take a look at structuring approaches for implementing parallelism in ANNs. Kock
(1996) proposes how to break the ANN structure from large- to fine-grained pieces in order
to run them in parallel:

• Training session parallelism � Train a given ANN simultaneously with
different learning parameters in the same training examples. Typically different
sessions are placed on different processors.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 143

• Training example parallelism � Implementation of simultaneous learning in
different training examples within the same session. A training set is split into a
number of subsets and the corresponding number of network instances are
trained simultaneously. The weights of each network instance are accumulated
separately and at the end of the process they are brought together in one
network. The different training subsets are distributed on the different
processors.

• Layer parallelism � It provides concurrent computation for layers. Layers are
pipelined so that learning examples are fed through the network in a way that
each layer works in a different training example. The different layers are
distributed on the different processors.

• Node parallelism � The ANN neurons perform weighed input summation
and other computation in parallel.

• Weight parallelism � It refines node parallelism allowing the simultaneous
calculation of each weighed input. This form of parallelism can be implemented
in most of the ANN models.

• Bit serial parallelism � Each bit of the numerical calculations is processed in
parallel. It is a hardware dependent solution.

Implementing a generic solution for the CANN framework means that any
implemented ANN shall naturally have a parallel solution. The mentioned implementations
shall be considered in a generic solution.

In general, there are four ways of implementing ANN algorithms: adapting or
extending a preprogrammed simulator; developing the solution from scratch using a general
purpose language; developing the solution using a ANN library based on a general-purpose
language; and using an ANN specification language. Simulators in general lack flexibility and
extensibility in terms of ANN parallel implementations so that the developers have to make
their hands-on implementation. Parallel implementations of ANN simulation kernels are rare
because a parallelization of the complete kernel is difficult. When doing so, the kernels have
restricted functionality being applied to specific ANN architectures or models.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 144

In the early nineties a major challenge of ANN development was to achieve maximum
performance on parallel machines performing ANN tasks. The common strategy of these
developments on general-purpose parallel computers (SIMD architectures like MasPar and
MIMD architectures like IBM SP-2) was to speed up the processing using special
characteristics of the target ANN architectures. That means implementing specific solutions
to specific ANN models from scratch. Special-purpose parallel neurocomputer architectures
like CNAPS (Hammerstrom, 1990) or Synapse-1 (Ramacher, 1992) were also used. Such
implementations were done using machine-dependent languages or libraries. The
programmer is responsible for choosing how to partition the ANN structures in order to
better use the available processors. This may not be optimal and may collapse if any ANN
architectural change has to be done.

Another alternative is to use libraries for the simulation of ANN like SESAME (Linden
et al. 1993), MUME (Jabri et al. 1993) or PDP++ (Dawson et al. 1997). Such libraries are
based on general-purpose languages and contain facilities for constructing ANN architectures
and simulate them. They are neither suited for neurocomputers nor for parallel computers
due to the underlying sequential programming language.

Trying to avoid this, some specific languages for building ANN solutions were created.
One example is CuPit (Prechelt, 1994). This language was specifically designed to express
neural network learning algorithms. Its programs can be compiled into efficient code for
parallel machines. Its advantages in terms of software design are the high expressiveness,
clarity and ease of programming for implementing ANN learning algorithms. As the language
is domain specific, it can result in more efficient code because it applies optimizations
unavailable to compilers for general-purpose parallel languages. However, when compared to
solutions built in sequential languages such as C/C++, the resulting code may be less
efficient. Furthermore, this language does not support characteristics of object-oriented
languages such as inheritance and neurocomputers were not supported as target architectures.

Another more recent language for building ANN parallel solutions is the EpsiloNN
(Strey, 1999). The EpsiloNN (Efficient parallel simulation of Neural Networks) was built to
efficiently simulate ANNs on different parallel computer machines such as SIMD parallel
computers and neurocomputers. Object-oriented concepts such as classes and inheritance
are applied to describe the ANN architectures. Similarly to the CuPit language, EpsiloNN
main building blocks for the ANN construction are neurons, synapses and networks.
EpsiloNN does not rely on polymorphism and dynamic binding because they can only be

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 145

analyzed at runtime and forbid the computation of an optimal mapping at compile-time. The
ANN specification is transformed into an appropriate simulation source code. It generates C
ANSI code for sequential computers and adequate C dialects for parallel computers or
neurocomputers.

Neural networks in general execute few kinds of operations: local operations on
neurons or synapses; reduction operations such as summing over all weighed incoming
synapses; and broadcast operations such as applying a global parameter to all neurons. Those
described operations may happen on local objects such as the neurons or on groups of them
such as the incoming synapses of a neuron. Such kinds of operations lead to two nested
levels of parallelism: Weight parallelism and Node parallelism. The already cited languages for
implementing ANN algorithms CuPit-2 and EpsiloNN implement Weight and Node parallelism
having achieved very good results. The CANN solution goes in the same direction by
implementing a generic solution to Weight parallelism that is explained in the next section.

4.2 Towards a generic parallelization of the CANN framework

In the CANN framework, objects such as neurons and synapses are implemented. A
natural match to that is to implement weight and node parallelism. In CANN the neurons are
objects that act as controllers of the synapses execution. Each neuron requests the execution
of the synapses that are associated to it. It performs its own computation only when all the
dependent synapses return the results of their own computation. Furthermore, the execution
of the synapses objects are clearly independent from each other and from the other objects of
the framework being good candidates to be run inside a thread. In fact, the synapses are
responsible for the weighed input calculation, being already prepared for implementing the
Weight parallelism. Complementarily, the neuron object is a good candidate to group and
coordinate the execution of the synapses threads.

Figure 4.1 below shows a CNM. Each synapse is drawn with a different line type
representing one different running thread. During the CNM execution, the lower synapses
that form one combination (leads to one combinatorial neuron) can run in parallel. The
upper synapses executions also are completely independent from one another and are
performed in parallel by independent threads coordinated by the hypothesis neurons.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 146

T
1

T
2

T
4

T
3

T
5

…

Hypothesis neurons

Combinatorial neurons

Input neurons

Upper synapses

Lower synapses

Figure 4.1 - Threads on CNM, each synapse becomes a thread

Such a solution can be applied to different ANN models by simply isolating the
synaptic computations that are necessary to perform the computation of one neuron. The
four ANN models implemented in this thesis could incorporate this solution (e.g. CNM,
Backpropagation, SOM and ART1). However, in practice, tests of such implementation with
the CNM model proved that this solution is too fine grained because a large number of
threads with short processing times may be generated. The generation of an excessive
number of threads turns the ANN performance to an unacceptable level and makes its
management sometimes impossible at the level of operating system capabilities.

Implementing Node parallelism could be a good alternative as a general solution for the
CANN framework, but clearly the problem of generating a huge number of threads still can
happen, depending on the implemented ANN and domain problem.

Weight and Node parallelism led to good results on the already referred CuPit-2 and
EpsiloNN languages certainly because they are capable to generate optimized code for
parallel machines that are able to run efficiently such fine-grained operations contained on
the synapses and neurons calculations. Such a solution in a general-purpose language like Java
turned out to be inefficient. It is known that Java imposes a significant overhead on the
threading execution, so that a comparison of the CANN solution and the other cited general-
purpose solutions are unfruitful. Furthermore, the different target hardware of the solutions
makes such a comparison improper.

The natural consequence of this first experiment is to look for more large grained
parallel implementations. The CANN framework does not implement the concept of layer so
that to implement a solution such as Layer parallelism is neither practical nor intuitive. It would
be necessary to make changes to the inner code of the framework in order to implement it.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 147

However, the implementation of layers as exposed ANN structures shall be done in future
evolutions of the CANN framework.

A general solution for parallelism on the CANN framework succeeds at the level of
Training session parallelism. This approach was used to implement the CANN simulation
characteristic of having more than one ANN instance running at the same time. The next
section explains how this solution was implemented and used in the CANN simulation
environment.

4.2.1 The CANN parallel implementation

The CANN simulation environment allows the execution of several ANN instances at
the same time (Training session parallelism). The ANN�s are started in parallel inside separate
threads. The termination of the execution of each ANN is independent from each other. The
CANN simulation environment allows the parallel execution of different ANN instances
from different ANN models.

The parallel implementation was done at the level of the neural networks manager
class. The network management classes are subclasses of the abstract class NetManager that
can be partially seen in Code 4.1 below. This class predefines that any of its subclasses
implements the interface Runnable that means they can start thread executions. It also defines
that its subclasses shall implement a method called netManagerStarter that shall be used to start
the ANN learning inside a thread called netLearnThread. Code 4.1 also shows part of the class
CNMManager, where the method netManagerStarter is implemented and the thread is created
and started. The method run is also shown where the inner execution of the thread is defined.
The variable threadBody defines what method to call inside the created thread defining the type
of execution the ANN must run. The class may run the network inside a thread for the
normal CNM learning algorithm, the optimized learning algorithm or even for the testing of
the already trained network.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 148

Code 4.1 � Parallel implementation

public abstract class NetManager extends Object implements Serializable, Runnable {
 //…
 transient Thread netLearnThread;
 abstract public void netManagerStarter();
 //…
}

public class CNMManager extends NetManager {
 void netManagerStarter() {
 netLearnThread = new Thread(this,"Thread Learn");
 netLearnThread.setPriority(parameters.thePriority);

 if (netOptimization == true) {// If Optimized learning
 // sets optimized learning parameters
 // …
 }
 else {
 // sets original learning parameters
 // …
 }
 netLearnThread.start();
 }

 // calls the appropriate simulation method
 public void run() {
 switch (threadBody) {
 case CONSULT_CASEBASE: // Consulting Case Base
 runConsultCaseBase();
 break;
 case STARTER_LEARN: // Learning Case Base
 runLearnCaseBase();
 break;
 case OPTIMIZED_LEARN: // Optimized Learning Case Base
 runOptimizedLearnCasebase();
 break;
 }
 }
//…
}

The called method inside the run method is responsible for calling the appropriate
INetImplementation instance to execute its tasks. In this way, each ANN instance in the CANN
framework can run inside an independent thread. Figure 4.2 sketches the implementation
framework.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 149

 CANN simulation environment

CNMManager

CNMManager

CNMImplementation

CNMManager

...

Vector of NetManager

run

run

run

CNMImplementation

CNMImplementation

Threads

Figure 4.2 � The parallel architecture solution

The CANN simulation environment allows the user to create many ANN instances at
the same time grouping them in a Vector. The user can start the execution of the ANN at any
time.

4.2.2 CANN parallel solution test results

The main goal of the tests is to verify check whether the fact of having different
instances of ANN�s running at the same time will influence the ANN performances. The
proposed test measures the performance of two different ANN instances when running
alone and when running together, sharing the machine resources. The same test was
performed on different machines with one and two processors, to verify the behavior of the
solution when the CPU is shared and when two CPU�s can be allocated. The first machine is
a Pentium III 550 MHz with 256 Mb of RAM and the second one is an IBM Netfinity 3000
with 2 Pentium III 667 MHz processors and 512 Mbytes of RAM.

The two selected nets were the Backpropagation and the SOM. The time each network
took to perform its learning process was measured. The Backpropagation network ran 10000
epochs to learn the XOR problem and the SOM ran 5000 epochs to learn the Bi-
Dimensional problem. The start of the learning process is manual for both networks using
the CANN GUI. Therefore, one shall be started before the other. The SOM network was
started first.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 150

Table 4.1 - Networks running on a machine with one CPU

Network Standalone Parallel

BP 14843 ms 20812 ms

SOM 10750 ms 21429 ms

Table 4.1 shows the results when the tests where performed on the single CPU
machine. The column Standalone shows the time average the networks took to perform the
learning running each one in a different time frame, not competing for the CPU. The column
Parallel shows the time average when they were executed in parallel. The results show that
when running in parallel both networks spend more time to perform the learning individually,
however, as they are running together, the total time is simply the time the last net took to
learn. When running them separately the time of both shall be summed. The Figure 4.3
shows the difference of running the ANN sequentially and in parallel. Running the
Backpropagation and the SOM separately would take on average 25593 ms (14843 ms +
10750ms), while running together it would take on average 21429 ms (time SOM took to
finish, the BP certainly had finished before). Thus, it is worth running the networks in parallel
even with a one CPU machine.

Time (s)

BP and SOM in parallel

BP sequential

SOM sequential

10.8 21.4 25.5

Figure 4.3 � The time difference between running in parallel and sequentially

The Speed-up (Sp) calculus (Hwang & Xu, 1998), reinforces this conclusion. It is a
simple acceleration factor that is given by the reason of the sequential time (st) by the parallel
time (pt) as can be seen on Equation 4.1 below.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 151

pt

st
Sp =

Equation 4.1 � Speed-up

Taking the sequential time as the addition of the sequential times for the
Backpropagation and SOM execution (25593 ms) and for the parallel time the SOM time
(21429 ms), the Speed-up will be 1.19 (Equation 4.2). It means that running the two networks
in parallel it will be 1.19 times faster or 19% faster.

19.1
21429

10750 14843 =+=Sp

Equation 4.2 � Speed-up for running BP and SOM in parallel in a single CPU

For the machine with two CPU�s, more tests were performed. The first test was to
verify the performance of the Backpropagation running standalone and with two instances at
the same time. Table 4.2 shows the standalone performance average of the Backpropagation.

Table 4.2 � Backpropagation running standalone in a 2 CPU�s machine

Network Standalone

BP 5500 ms

Table 4.3 shows the performance when two instances of the Backpropagation run
during 10000 epochs on the 2 CPU�s machine.

Table 4.3 � Two Backpropagation instances running in parallel in a 2 CPU�s machine

Network Parallel

BP 1 8367 ms

BP 2 8586 ms

Once again it was worth running two ANN�s at the same time, considering that, on
average, running two instances of Backpropagation at the same time is faster than running
them in sequence. The Speed-up for this execution is given in Equation 4.3 below. The
sequential time is given by the execution of two Backpropagation simulations sequentially
and the parallel time is given by the longest execution of the two parallel Backpropagation
simulations. The Speed-up result is that the parallel execution is 28% faster than the
sequential one.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 152

28.1
8586

5500 5500 =+=Sp

Equation 4.3 � Speed-up for running BP in a 2 CPU machine

Figure 4.4 shows the processors being allocated to perform the execution of the two
Backpropagation simulations in parallel. The two CPU�s are nearly 100% allocated during the
simulation period.

Figure 4.4 � Two CPU�s running two Backpropagation instances in parallel

Table 4.4 below shows the average time for running the learning of one instance of the
SOM network in the machine with two CPU�s. Table 4.5 shows the average time two SOM
instances take to run in parallel on the same machine.

Table 4.4 � SOM running standalone in a 2 CPU�s machine

Network Standalone

SOM 8555 ms

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 153

Table 4.5 � Two SOM instances running in parallel in a 2 CPU�s machine

Network Parallel

SOM 1 8974 ms

SOM 2 8760 ms

There is no significant difference between running the SOM as a standalone learning
process or running two learning processes at the same time. The Speed-up for this execution
is given in Equation 4.4 below.

90.1
8974

8555 8555 =+=Sp

Equation 4.4 � Speed-up for running SOM in a 2 CPU machine

This clearly shows the significant advantage of having such a parallel solution for
running the SOM learning. During the same time frame two networks can be learned instead
of one, the parallel solution for the SOM simulation is, on average, 90% faster than the
sequential one.

Table 4.6 shows the learning time when two instances of different ANN�s run in
parallel on the machine with two CPU�s. The Backpropagation instance took a little more
time than when running standalone and the SOM instance once again presented a similar
performance average.

Table 4.6 � Backpropagation and SOM instances running in parallel in a machine with two CPU�s

Network Parallel

BP 6510 ms

SOM 9291 ms

The results confirmed that it is worthwhile simulating different ANN models at the
same time on the same machine. The Speed-up for this execution is given in Equation 4.5
below. The parallel execution was 51% faster than running sequentially.

51.1
9291

8555 5500 =+=Sp

Equation 4.4 � Speed-up for running BP and SOM in a 2 CPU machine

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 154

Figure 4.5 below shows the allocation of the CPU�s during the Backpropagation and
SOM instances learning.

Figure 4.5 �Two CPU�s running Backpropagation and SOM instances in parallel

It is important to note that running more than one ANN in parallel inside the CANN
simulation environment may lead to performance bottlenecks. Depending on the number of
nets running simultaneously and the size of those nets, the machine resources can be dried
out fast.

CANN runs in one Java runtime, receiving a main controller process. The threads
created for the ANN�s will allocate the resources of this process. For each created ANN
instance, its threads will make use of the same memory and CPU footprint that was allocated
for the other ANN instances inside the same process. So it is important, when running more
than one ANN using CANN, to clearly understand the ANN necessities of CPU and
memory footprint as well as the machine resources and Java runtime issues. It may be better
to run some ANN instances on separate machines to avoid competing for the CPU and
memory given the number of CPU�s and threads to create and the available memory. Further
tests could be elaborated and performed to measure such situations in order to map the exact
implications of running parallel ANN�s in the CANN simulation environment.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 155

To be able to extend the possible resources for running the parallel ANN instances an
extension of this general solution is presented in Chapter 5 where the Training session parallelism
allows the implementation of parallelism by distributing the different ANN models on the
networked computers for learning and testing processes.

The solution presented here is general enough as a good solution for the CANN
framework. However, it does not take into consideration the parallelism inherent to the
specific ANN models. As a general solution is difficult at such a level, as already explained, it
is important to do some investigation on how to implement the parallelism at least for the
CNM model, which is the model where parallelism could lead to significant gains due to the
inherently structure of CNM nets. Such an investigation can also help evaluate the CANN
architecture as well. Next section explores the possibilities for implementing parallelism for
the CNM.

4.3 A parallel solution for the CNM

The CNM model is a CPU intensive network. Depending on the problem domain it is
modeled for and the chosen combination order the network can have an enormous size and
its learning time can take days. That�s why it is important to invest time in the optimization of
the CNM learning time. Fortunately the CNM has an inherent parallel structure, though
implementing parallelism is quite straightforward.

Figure 4.6a shows a first approach to separate the CNM network into parts that can
run in parallel. This subdivision is based on the fact that the whole network combinatorial
structure is independent for each Hypothesis (upper neurons). Only the input neurons are
shared resources that shall be synchronized. To this approach, one thread is created to
manage the learning process of each Hypothesis Neuron instance. The set of combinations
that forms the hypothesis is run inside the thread.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 156

T1 T2 T1 T3T2 T4

(a) (b)

Figure 4.6 - Using threads on CNM

A natural evolution to this solution can be seen in Figure 4.6b where more than one
thread can be defined for each hypothesis. Each combination that forms the set of
combinations for each hypothesis is also independent of each other. As a consequence, the
set can be subdivided into subsets of combinations. Each subset can run as an independent
thread. Inside a subset, the combinations are evaluated in sequence. The user can define the
number of threads to perform the set of combinations (number of subsets). This number
cannot be bigger than the number of combinations of the set.

The solution proposed above can be considered as a variation of the Training example
parallelism. The training set was not subdivided into subsets but the CNM was split into many
parts where each part learns separately to be glued together at the end of the learning process.
Constructing separate instances of parts of the CNM network is appropriate once the
execution of each ANN combination is independent of each other. The constructed solution
can also be considered a variation of the Node parallelism because different neurons in the
same level run in parallel. Each neuron is used as a coordinator for the running of the
synapses inside independent threads. However, the threads are created only at the level of the
hypothesis neurons and not at the level of combinatorial neurons.

The implemented solution scales well. It optimizes the use of threads according to the
size of the combination layer and the machine capabilities. In the next section, the
implementation of this solution is explained in detail, and its results are also extensively
evaluated in order to show that this is an appropriate approach to implement parallelism for
the CNM model.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 157

4.3.1 CNM Parallel implementation

The solution shown in Figure 4.6b and explained above can be implemented on the
CANN framework in a systematic way. The object-oriented architecture and the
implementation in the Java language facilitate the use of threads. The proposed solution
implements the Group Proxies (Lea, 1999) design pattern that is applied for implementing
partitioned concurrent activities in Java. A group consists of all members of some arbitrary
set, for instance a set of CNM combinations. Group Proxies are protocol adapters that
manage multiple threads controlled by multiple objects; for instance, the hypothesis neurons
control the threads that contain the sets of combinations.

The Group-based design makes it easy to increase parallelism transparently when there
are multiple CPU�s, and whenever there is a good reason to partition a problem into parts
that can be run concurrently. That is exactly the case of the CNM model. Group Proxies
consider complex features such as the controlling of adding or removing members of the set
that are not used in this work.

The Group Proxies pattern implements the design necessary to perform multithreaded
delegation, also known as a form of scatter/gather processing (Lea, 1999). Figure 4.7 shows
the interaction diagram of the Group Proxy pattern and Code 4.2 an algorithm for
implementing it. The core algorithm logic is implemented in a method called op() that
implements the scatter and gather parts of the thread control. The scatter part of the code is
used to start the necessary threads and the gather shall make the execution join of the started
threads. The gather part is also responsible for collecting results that will be returned by the
op() method.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 158

Code 4.2 - Group Proxies algorithm

public interface AnInterface {
 public ResultType op(ArgType arg);
}

class GroupProxy implements AnInterface {
 public ResultType op (ArgType arg) {

// “Scatter” phase
split the problem into parts;
for each part {
 start up a thread performing its actions;
}

// “Gather” phase
wait for some or all threads to terminate;
collect and return results;
}

}

scatter

op
client proxy

return

members

gather

Figure 4.7 - Group Proxies interaction diagram

Code 4.3 sketches the computeEvidentialFlow method from the CNMImplementation class.
The method implements the choice of performing the CNM learning or testing processes
(evidential flow) serially or in parallel. The learning and testing processes are implemented in
the CNMManager class. In case of running serially, for each hypothesis neuron the method
serialStartEvidentialFlow of the class CNMHypothesisNeuron is called. The evaluation of each
hypothesis is performed in sequence. The evaluation of each combination inside the set of
combinations of each hypothesis is performed in sequence as well.

When running in parallel, the method startEvidentialFlow of the class
CNMHypothesisNeuron is called for each hypothesis neuron. This method creates threads for
running the evidential flow of the hypothesis neuron. The created threads are returned in a

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 159

vector. The method computeEvidentialFlow is responsible for performing the join of all threads
started by each hypothesis neuron.

The method computeEvidentialFlow implements the Group Proxy pattern by
implementing the scatter and gather phases. When the method calls the startEvidentialFlow of
the class CNMHypothesisNeuron it is controlling the starting of the parallel threads execution,
implementing the scatter phase. When it makes the join of the started threads it is
implementing the gather phase. The gather phase of the computeEvidentialFlow implements an
AND termination where all the threads are waited to terminate. Besides this, it does not
return any result because they are already contained on the CNMHypothesisNeuron class that
implements the threads execution and can be accessed by the caller class CNMImplementation.

Code 4.3 � The computeEvidentialFlow method

/*
* Implements the calling of the evidential flow for hypothesis neurons
*/
void computeEvidentialFlow() {
 // compute the evidential flow = propagate evidences
 if (!parallelExecution) {
 for each hypothesisNeuron do {
 // sets initial variables
 //…
 hypothesisNeuron.serialStartEvidentialFlow(parameters);
 }
 }
 else {
 // create threads for running sets of combinations
 // scatter phase
 Vector hypothesisThreads = new Vector();
 for each hypothesisNeuron do {
 // sets initial variables
 //…
 hypothesisNeuron.startEvidentialFlow(parameters);
 }
 // make the join for all hypothesisNeurons Threads
 // gather phase
 try {
 for each hypothesisThread do
 hypothesisThread.join();

 }
 catch (InterruptedException ex) {
 for each hypothesisThread do
 hypothesisThreads.stop();
 }
 }
}

Code 4.4 was picked from the CNMHypothesisNeuron class. It shows the
startEvidentialFlow method. The set of combinations associated with the hypothesis neuron is
divided into subsets. Each subset is encapsulated in a thread that is created and started.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 160

Code 4.4 � The startEvidentialFlow method

/*
* Computes Fuzzy And (minimum) or Fuzzy OR (maximum)
*/
Vector startEvidentialFlow(CNMHypothesisNeuron upNeuron, Vector auxParameters) {
 // sets initial variables
 //…
 neuronThreads = new Vector();

 if (incomingSynapses.size()<hypothesis.getNumberOfThreads())
 hypothesis.setNumberOfThreads((short)incomingSynapses.size());

 // gets the rest of the division; if odd the last loop must have one more element
 lastLoopRest = incomingSynapses.size()%hypothesis.getNumberOfThreads();
 loopSize = (int)incomingSynapses.size()/hypothesis.getNumberOfThreads();

 // starts the threads based on the number of threads set by the user
 // each thread controls the execution of a set of combinations
 for (int i=0; i<hypothesis.getNumberOfThreads(); i++) {
 // wait for variables loopBegin and loopEnd in use by the previous thread
 while (loopNotConsumed) {};

 neuronThreads.addElement(new Thread(this, "Thread "+hypothesis.getName()+"->"+i));
 loopNotConsumed = true;
 loopBegin = loopSize*i;
 if ((i == (hypothesis.getNumberOfThreads()-1)))
 loopEnd = (loopSize*(i+1)) + lastLoopRest;
 else
 loopEnd = loopSize*(i+1);
 ((Thread)neuronThreads.elementAt(i)).setPriority(5);
 ((Thread)neuronThreads.elementAt(i)).start();
 }
 return (neuronThreads);
}

4.3.2 CNM parallel solution test results

Table 4.7 shows the resulting tests of this parallel solution. The tests were performed
on an IBM Netfinity 3000 with 2 Pentium III 667 MHz processors and 512 Mbytes of RAM.
The CNM was configured to run the credit analysis problem with order 4 and without
optimizing the learning. The learning parameters were acceptance threshold 0.6 and pruning
threshold 0.4.

The network performance was tested first without any thread so that the neural
network learning process was performed serially. The other four tests are parallel executions
with 2, 4, 8 and 16 threads. Each configuration was tested three times and the time and
memory usage averages can be seen in Table 4.7. The speed-up results of the parallel
executions are also shown in Table 4.7 in order to clearly show when the parallel solution is
desirable and when it is not. While the Speed-up is greater than 1.0 the parallel execution has
better performance than the serial one.

Table 4.7 � Time and memory results

Net Configurations Time Memory Speed-up

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 161

Mono (1) 57.30 31120 1.0

2 Threads (2) 36.68 35888 1.56

4 Threads (3) 49.58 35328 1.15

8 Threads (4) 69.05 35880 0.82

16 Threads (5) 99.84 35652 0.57

The memory usage is nearly the same for all cases. The time to perform the learning
was significantly better when using the parallel solution for 2 threads. Using 4 threads the
performance is still better. As expected when the number of threads increases, the
performance starts to degrade. It can be even worse than running the network serially. Figure
4.8 below clearly illustrates this scenario where the polynomial curve describes the behavior
of improving the number of threads when running in the same machine. The reasons for this
behavior are twofold: the thread management takes time; and there is a limit for optimizing
the performance using two processors. It is not just by chance that the best performance
happens when there are two threads running, one in each processor. In fact, the management
of many threads without the possibility of executing them in parallel decreases the
performance progressively. When there are more active threads than there are CPU�s, the
Java run-time system occasionally switches from running one activity to running another,
which also entails scheduling � figuring out which thread to run next (Lea, 1999).

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 2 4 8 16

Threads

S
p

ee
d

-u
p

Performance

Poly. (Performance)

Figure 4.8 � Speed-up for the CNM parallel solution

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 162

Figures 4.9 to 4.13 below show snapshots of the Windows Task Manager for each of
the tested network configurations. It starts with Figure 4.9 that shows the performance of the
ANN when running serially.

4.3.2.1 Test 1 – Running serially

The first processor is responsible for running the ANN. The second processor also
spends some time performing other tasks not related to the ANN but to the Java
environment control/synchronization. It is clear that the performance of this configuration is
not optimal because the processors are not 100% used during the processing time. The
system varies the usage of the CPU�s very much. It is known that Java methods employing
synchronization can be slower than those that do not provide proper concurrency protection.
The ANN below runs one thread only, but with synchronization implementation, so that it is
not a simple implementation with any concurrency control. Between thread and
synchronization overhead, concurrent programs can be slower than sequential ones even if
the running computer has multiple CPU�s (Lea, 1999).

Serial Test
Memory usage average: 31120 Mbytes
Time average: 57.30 s

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 163

Figure 4.9 � Time performance for serial implementation

4.3.2.2 Test 2 – Running with 2 threads

The next test configuration shows the results when using 2 threads to perform the
learning. Figure 4.10 shows the usage of the two processors during the neural network
execution. The execution for both processors is similar, each one taking care of the execution
of one thread. The processors spend nearly 100% of its capacity performing the ANN
learning during the time they are allocated to do that, in opposite to the serial solution where
no processor is allocated to its maximum capacity during the learning process. The first small
hill, that is very close to the main plateau and that can be seen in the performance of both
processors, is the processing time used for generating the ANN combinations. The main
plateau indicates that the ANN is performing the learning and the next small hill corresponds
to the ANN pruning.

2 Threads
Memory usage average: 35888 Mb
Time average: 36.68 s

Figure 4.10 � Time performance with 2 threads

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 164

4.3.2.3 Test 3 – Running with 4 threads

When running with four threads, the performance decays a little bit. Figure 4.11
corroborates that the processors are not 100% allocated during the learning process as
happened on the previous configuration with 2 threads. The reason for that is the time lost
with scheduling the threads during the learning process. Each thread receives a time slice, and
the change from one thread to another makes the processing time not as optimal as when
there are no threads to swap.

4 Threads
Memory usage average: 35328
Time average: 49.58

Figure 4.11 � Time performance with 4 threads

4.3.2.4 Test 4 – Running with 8 threads

Having more than 4 threads does not improve the learning performance for the tested
machine as can be seen in Figure 4.12. It would be necessary to have a machine with more
processors to allow more threads at the same time to be able to keep improving performance.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 165

8 Threads
Memory usage average: 35880
Time average: 69.05 s

Figure 4.12 � Time performance with 8 threads

4.3.2.5 Test 5 – Running with 16 threads

After a certain number of threads, the performance is getting worse. The test with 16
threads (Figure 4.13) shows a performance more than 50% worse than the learning without
parallelism.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 166

16 Threads
Memory usage average: 35652
Time average: 99.84 s

Figure 4.13 � Time performance with 16 threads

4.4 Conclusions

Implementing parallelism in neural networks is not a straightforward task. In general it
requires complete control on the ANN software architecture in order to reproduce specific
parallel software structures and control mechanisms. Implementing such structures and
mechanisms in a pre-defined framework may be difficult because it is necessary to deeply
understand the framework in order to get its benefits. Typically, adequate extensions to core
classes� become necessary.

The first attempt to implement a generic solution for the CANN framework failed. The
implementation of parallelism at the level of each synapses (Weight parallelism) proved to be
too fine-grained, leading to performance problems. The second solution was to implement
the parallelism at the level of Training session that means to have different ANN instances
running in parallel. This approach was successful showing that more than one ANN can

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 167

share the CPU resources without degrading its performance. In that way many ANN
instances can run in parallel in order to find a solution for a given problem. The number of
ANN instances able to run in parallel depends only on the ANN models resource allocation
and the available machine resources.

Another successful experiment in implementing parallelism in this work is to consider
the parallel solution for a given ANN model, taking into consideration its specific
architecture particularities. The architecture of each ANN model defines its possible parallel
solutions. As the architectures differ very much from model to model, it is difficult to have a
generic parallel solution. However, the CANN framework facilitates the parallel
implementation by giving exact entry points for implementing thread control such as the
startEvidentialFlow and computeEvidentialFlow methods. There is a clear separation of ANN
architectural parts such as neurons, synapses and management components such as
NetImplementation and NetManager. For instance, the management components implement
methods that specifically control the ANN execution for learning and testing processes.

Given those facilities, it is straightforward to implement a parallel solution for the
CNM model. It is important to reinforce that this implementation is unique; there are no
other parallel implementations for the CNM model so far.

A positive consequence of having a specific parallel solution for the CNM model is that
it performs properly, leading to performance improvements. The performance of the ANN
execution can be better when running in parallel as shown by the tests. The CNM parallel
solution can accommodate the usage of the available hardware resources leading to better
hardware usage during the learning and testing processes. It is possible to create an
appropriate number of threads in order to get the best results from the number of available
CPU�s. The drawback is that the solution is specific for this model. It is intrinsically
implemented on its architecture and cannot be extended to other ANN models. It would be
an important future implementation experiment to add specific parallel solutions to other
ANN models inside the CANN framework such as the BackPropagation or SOM.

Complimentary tests were also performed on a 4 processor-machine and the CNM
performed appropriately, allocating the 4 processors during learning and testing processes.
Those tests were performed only to validate the implementation so that its results are not
reported here. The machine was not available to perform long time performance tests in
order to evaluate different CNM behavior with different domain configuration and large

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 168

learning and testing files. In the future, it would be interesting to execute more complete tests
when the parallel solution could be tested with different CNM configurations and the
learning and testing load could be improved to more complicated application domains with
bigger learning and testing sets.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 169

5 I m p l e m e n t i n g d i s t r i b u t i o n i n t h e C A N N f r a m e w o r k

The main goal of having a distributed simulation environment for neural networks is to
be able to use the networked computational capacity, which means to use the memory and
processing capacity of the networked computers. The implementation was motivated by the
possibility of optimizing the time spent to perform ANN learning and testing by using the
networked capacity. Even being the possibilities of distributing code a very promising
alternative to improve ANN simulation results, there is no similar work focusing on
implementing distributed solutions for ANNs. Though the results presented along this
chapter can be considered contributions to the state of the art in the software development
of ANNs.

The simulation of ANN can be a very memory intensive and CPU intensive process.
Each created ANN structure can allocate significant amounts of memory and its processing
can take CPU hours or even days. Those are the two main reasons to distribute ANN
instances. By sending different ANN instances to different machines, the computational
capability is multiplied. Therefore, different ANN instances with different configurations can
be built and tested in parallel. From an end user point of view, the CANN simulation
environment should allow one user to distribute several ANN instances yet controlling them
locally.

The implementation of the ANN distribution was built in the CANN framework as a
facility for distributing any ANN model implemented in CANN framework. The CANN
ANN instances were built as Java objects with mobility capabilities, being able to run in a
remote machine.

5.1 Implementing distribution in the CANN simulation environment

This section describes the design and implementation of a software solution for
implementing distributed simulation for Artificial Neural Networks (ANN). The CANN
framework offers a group of classes that implement various ANN models allowing the
simultaneous management of any number of instances of those ANN components. These
ANNs being trained or tested at the same time in the simulation environment should be
distributed over networked computing devices. In this section the architectural aspects that
are relevant for understanding the implementation of the ANN distribution are explained in

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 170

detail. Once again the software implementation has its distribution solution based on the
Objectspace's Voyager library (http://www.objectspace.com).

5.1.1 Choosing the mobile component

One way of distributing ANN computation is to run different ANN models on
different machines. The main implementation idea is to move only the core ANN objects in
order to have them running on remote machines, allocating the remote machine CPU and
memory. The objects that implement the ANN control shall be kept running locally. Class
NetManager together with the interface INetImplementation (see Chapter 3), form the core entity
for distributing different ANNs over a network by implementing such a separation of
controller and implementation.

The NetManager objects remain in the local program. Each NetManager instance is
independent of the other ones. The user may work with many NetManager instances at the
same time in the simulation environment. Each instance of the NetManager has an
independent GUI so that the user is able to control each ANN simulation independently.

The objects that implement the INetImplementation interface are appropriate for
distribution because each one is independent, has no GUI, and is the only one responsible
for creating, keeping and executing the core ANN functionality. The INetImplementation
instances can be created either locally or remotely. In both cases, the instance can be moved
later.

5.1.2 The ANN instance as a Voyager Agent

The clear separation of functionality provided by the object model helps to have a
natural and straightforward implementation of the distribution. This can be seen in detail
below, where the use of the Voyager distribution framework is explained.

Voyager implements a forward mechanism to deal with the agent�s distribution. When a
remote object is constructed using Voyager, a proxy object whose class implements the same
interface as the remote object is returned to the server machine (from where the remote
object was created). Voyager dynamically generates the proxy class at run time. The proxy can
receive and forward messages, receive and return value, and pass the return value on to the
original sender. The local machine in this case is used as a server computer to send the

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 171

agents. In this way, the machine where the remote objects are created keeps the proxy of the
remote objects.

The forward mechanism is implemented using Java interfaces. A special proxy object
that implements the same interface as the local object represents the remote object (see
Figure 5.1). Therefore, a variable whose static type is an interface may either refer to an
instance of the actual object or a proxy object.

return Value

method call

return Value

method call

Remote MachineLocal Machine

Proxy to
Object

AnObject

Object
AnObject

Figure 5.1 - Remote messaging using Proxy

The proxy solution perfectly fits the CANN architecture. The INetImplementation
interface can refer to a local object or to a proxy to the remote object, and the NetManager
implements the object that calls the remote object via the proxy. In such a case it is not
necessary to change the CANN design. Figure 5.2 shows how the Voyager Proxy is added to
the CANN framework to make remote references to a ANN component.

Figure 5.2 is the evolution of Figure 3.9 from Chapter 3 where the CANN architecture
is explained in detail. The specific ANN implementation classes implement the interface
INetImplementation that is used to act as the proxy interface for the ANN implementation
code. It makes then possible for the ANN�s that implements this interface to be moved using
Voyager.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 172

BPImplementation SOMImplementation CNMImplementation

+generateNet() : int
+LearnCase() : void
+TestCase() : Object

«interface»
INetImplementation

1

-manages

1

+generateNet() : int
+startLearn()
+restartLearn()
+createNetImplementation()
+createFrameNeuralNetwork()
+run()

#domain : Domain
#netImplementation : INetImplementation

NetManager

Figure 5.2 - ANN models as classes of INetImplementation.

It is important to refer here to the design aspects of having a proxy interface
implementation. Whenever a voyager Proxy is implemented in this distribution framework it
is implementing the �Proxy� design pattern (Gamma et al, 1995). This pattern makes clear
that the function of the object that implements it is to act as a forward mechanism.

Code 5.1 shows the Java source code of the NetManager class for moving objects of
static type INetImplementation.

Code 5.1 - The NetManager class

public abstract class NetManager extends Object implements Serializable, Runnable {
 INetImplementation netImplementation; // instance of the ANN model
 transient String URL = NetParameter.localHostURL; // sets to the default local host
 transient FrameNeuralNetwork frameNeuralNet; // generic ANN GUI
 Project project;

 //…

 abstract public void createNetImplementation();

 public void moveNetImplementation() throws Exception {
 netImplementation = (INetImplementation)Proxy.of(netImplementation);
 Agent.of(netImplementation).moveTo(getURL(),"atLocation");
 netImplementation.setProxies(project.domain);
 }
//…
}

The NetManager class defines the netImplementation variable that receives an instance of
any object that implements the INetImplementation interface. The variable netImplementation may
also contain a proxy object that will refer to the remote instance of the object.

The code continues with the declaration of a String that stores the URL where the code
should move. The third variable is the declaration of the NetManager generic GUI
implemented as a transient variable of the class FrameNeuralNetwork. Transient means that

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 173

this variable is not made persistent. Finally, a reference to the Project class is maintained by the
NetManager in order to be able to get access to the domain model and the learning and testing
data.

Two methods of NetManager are shown in Code 5.1. The first is the abstract method
createNetImplementation() that is responsible for creating the ANN instance. This method is
implemented by the NetManager subclasses. So the variable netImplementation is set by the
subclasses of NetManager. Those classes are specific managers for each ANN model and
know how to use the specific ANN model implementation.

The second method shown is the moveNetImplementation(). This method implements the
necessary code to move the object contained in the netImplementation variable. In the first
method line a proxy of the netImplementation variable is created and assigned to it. Then, the
variable does not refer anymore to the object but to its proxy.

The next step is to rely on the Voyager dynamic aggregation. It allows the attachment of
secondary objects, termed facets, to a primary object at runtime. A primary object and its
facets form an aggregate that is made persistent, moved, and garbage collected as a single
unit.

Voyager offers the Agent facet to move objects. This facet is useful when it is necessary
to give autonomy to the remote object. In such a case the task can be performed
independently of the launching computer.

Code 5.1 illustrates the usage of the Agent facet in the second code line of the method
moveNetImplementation(). Besides adding the Agent facet, the method moveTo(String URL,
String callback [, Object[] args]) is called. This method, defined in the interface IAgent, is
responsible for moving the object to the remote program and requests two parameters:

• The first must be a string containing the URL where to move the object;

• The second is a string that specifies the callback method to be used to restart
the code execution at the remote location.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 174

5.1.3 Effects of moving the ANN objects

After running the moveTo method, the ANN object is already located in the remote
program but is not able to perform properly before reorganizing its references to the local
program. The method setProxies handles this problem. The last line of the
moveNetImplementation() calls this method.

When moving an object in Voyager, the object and all of its non-transient elements are
copied to the new location using Java serialization. Pass-by-reference interfaces like
java.rmi.Remote are ignored. In this case, the object and its referenced objects are copied to the
remote program. To avoid copying excessive and unnecessary objects it is possible to store
proxies instead of the objects in the variables.

The ANN instances have references to instances of classes of the CANN project that
are responsible for data access. Those are the Evidence and Hypothesis classes and its instances
are controlled by an instance of the Domain class. For each ANN model, different references
to Evidence and Hypothesis objects must be kept in order to have the appropriate access to the
learning and testing data (Figure 5.3). Typically, the input and output neurons of the ANN
have direct references to the evidences and hypothesis that map the problem. With such
information an ANN instance can automatically get the appropriate learning and testing data
whenever necessary. The references to these objects are also stored either as direct reference
to the object or as a proxy in the case of having the instance in a remote program. Therefore,
the remote ANN implementations are able to refer to the local Domain objects.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 175

Remote ProgramLocal Program

Domain

Hypothesis:
Good
 Description...
Bad
 Description...

Evidences:
Age
 Description...
Salary
 Description...

A BP instance
Implements
INetImplementation

BPManager

Figure 5.3 - Associating the ANN to the Domain class

If the ANN instance is created locally, then the object references are directly set to the
variables, but if the instance is created remotely, proxies to the local objects are set to the
variables (dashed arrows in Figure 5.3). The method setProxies() does this job. Each ANN
model must implement this method in order to keep the correct proxies references when the
ANN object is moved (the appropriate references from the Neuron instances to the Evidences
and Hypothesis instances).

One project may have many Domain definitions. Each ANN instance must have its
own Domain definition in order to make the parallelization more straightforward. It is an extra
complication to handle different ANN instances referring to the same Evidence or Hypothesis
instance and, in consequence, to the same data. Having different Domain definitions avoids
the problem of synchronizing the access of one evidence or hypothesis by multiple ANN
instances. Also the access to the learning and testing data is handled by each Domain instance
independently. If different ANN instances have to use the same Domain definition, one
Domain instance is cloned to each necessary ANN instance.

Substituting the variables by proxies when the object is in a remote program can be a
problem when the user wants to save the project. Saving the project means saving all the
domain definitions and all ANN instances. When saving an ANN instance located in a
remote program, the persistence engine saves the referred proxies instead of the instances. To

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 176

avoid this, it is necessary to move all the proxies to their original location before completing
the saving operation. Part of the code that implements this is shown in Code 5.2.

The class Proxy offers the method getLocal() that returns a direct reference to the object
if it is located in the same program. To have all the remote ANN instances in the same
program, it is necessary to move them back to the local program before using the getLocal()
method. It is possible to check whether an instance is local or not through the method
isLocal() of the class Proxy.

When saving a project, it is necessary to move all ANN instances to the local program
and then to restore the ANN internal domain references. After this, the ANN instances can
be saved (serialized). After saving the project, the instances are returned back to the remote
program and the proxies are rebuilt.

For each ANN instance the method saveRemote() is called. This method first returns the
ANN instance to the local program by calling the method moveNetImplementationHome(). This
method simply calls the moveNetImplementation() with the local URL as parameter. The local
URL can be obtained from the Agent method getHome().

After returning the ANN instance to the local program, it is possible to restore its
original object. To implement the restoring of the internal proxies of an ANN instance all
classes based on the INetImplementation interface must also implement a method called
restoreObjectsReferences(). This method uses the methods isLocal() and getLocal() from class Proxy
to move the ANN instance. Furthermore, this method calls the method restoreObjectsReferences()
of the ANN instance which restores all internal proxies that an ANN instance has to the
domain classes. This is the inverse effect of the setProxies() method.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 177

Code 5.2 - The NetManager class (continued)

 // …
 public boolean saveRemote() {
 // code to get the remote code back and save it
 try {
 moveNetImplementationHome();
 if (restoreObjectsReferences()) {
 System.out.println("NetImplementation object restored");
 return true;
 }
 else {
 System.out.println("NetImplementation object not restored");
 return false;
 }
 } catch (Exception ee) {
 frameNeuralNet.statusBar.setText(ee.toString());
 System.err.println(ee);
 return false;
 }
 }
 public void moveNetImplementationHome() throws Exception {
 moveNetImplementation(Agent.of(netImplementation).getHome());
 }
 public boolean restoreObjectsReferences() {
 if (Proxy.of(netImplementation).isLocal()) {
 if (netImplementation.restoreObjectsReferences()) {
 // restores the object back to the netImplementation
 netImplementation =
 (INetImplementation)Proxy.of(netImplementation).getLocal();
 if (netImplementation == null)
 return false;
 else
 return true;
 }
 else
 return false;
 }
 else
 return false;
 }

5.2 Testing the CANN distribution solution

The tests were performed by generating 3 instances of the CNM neural network for the
credit analysis problem. The credit analysis is a classification problem where customer data
from a retail company is analyzed in order to classify the customer as potentially good or bad
for a credit offer. The network is trained with the portfolio data of 22 good customers and 22
bad customers (44 real cases). The customer data are organized in 32 different evidences
(data attributes) including evidences such as age, sex and value of the order.

The Java JDK1.1.7b and the Voyager 2.0.1 version were used as software platform. At
the moment of the CANN development and performance tests the Hotspot JVM was not

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 178

available. The use of Hotspot (Java project on a Just in Time Compiler -
http://www.javasoft.com) could significantly increase the overall performance of the system.

For testing the ORB, 4 machines connected in a LAN with velocity of 100 Mbits were
used. The ideal situation would be to use 4 identical machines, but there was no such
configuration available. Therefore the option was to have two groups of 2 identical machines
as described in Table 5.1:

Table 5.1 � Computers used to test the distribution

Machine name Processor RAM Memory
Fire PIII - 500 MHz 256 Mb

Ether PIII - 500 MHz 256 Mb
Earth K6II – 500 MHz 128 Mb
Water K6II – 500 MHz 128 Mb

On the local machine (Fire), the instances of the CNM neural network were generated.
Each instance works over the same domain model (the credit analysis), uses the same data for
learning and testing, and the same default learning parameters. Therefore the generated
networks have exactly the same size in neurons and the same behavior in learning and testing
the examples. The first neural network is created on the local machine and its learning and
testing are performed on the local machine as well. Another 3 neural networks were created
at the local machine and each was moved to a different remote machine. The neural network
structure (network generation) and the learning and testing were performed on the same
remote machines. By doing this distribution, it is possible to verify the behavior of the
CANN simulation tool, the implemented ANN framework and the Voyager ORB.

5.2.1 Measured results and discussion

One important measurement is to compare the time the same ANN spends to do the
learning locally and remotely. The learning time measurements are expressed in minutes in
the column �Learn� of Table 5.3. The time spent to perform the ANN test is also an
important measurement once a previously trained network can be distributed to perform
tasks on remote machines. How the ANNs perform in such a situation is useful in various
applications from credit analysis to network traffic control. In such applications, the learned
neural network is moved to the target machine where the measurement shall be done. It can
perform the whole evaluation on the remote machine and simply inform the results both to
the local and remote machines. The time results of the local and remote measurements of the

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 179

ANN�s for testing are shown in column �Test� of Table 5.3. Both the learning and testing
processes are performed for 44 cases. So the measurements are the total time the CNM
network spend to learn 44 cases or to test 44 cases.

In the process of learning, it is always important to consider the network generation,
that is a pre-condition to the learning. The time spent to perform the learning is also an
important measurement because this time may be critical, depending on the domain
application. In Table 5.3 the time spent to generate the networks locally and remotely is
shown in the column �Generation�.

Besides the time the ANN spends to perform the tasks remotely, it is important to
consider the time the system spends to transfer the network from the local machine to the
remote machine. It is necessary to consider if the neural network was already generated or
not to account this time. This aspect is important because, before generating the ANN, no
objects to represent the neural network architecture were created. After learning, the neural
network structure was already generated and perhaps pruned, remaining only the learned
ANN structure. In Table 5.3 the label �Transferring pre� shows the time spent by the CNM
network for credit analysis to be transferred before the network generation and learning was
performed. The label �Transferring pos� shows the time spent by the CNM network for
credit analysis to be transferred after the network generation and learning was performed.

Table 5.2 � Number of CNM neurons after learning

Neurons Layer Number
Input 32

Combinatory 679
Output 2

The CNM for credit analysis, after the generation and learning, has a total of 713
neurons (objects) remaining from the learning process, which means, those are the neurons
that form the learned network. Table 5.2 shows the exact number of neurons on each CNM
layer that remain after the credit analysis learning process. Besides those objects, the CNM
network creates synapse objects to connect neurons from different layers. This is the network
that contains the knowledge able to solve the credit analysis problem. Such a network can be
transferred to different remote machines to perform credit analysis directly on these
machines.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 180

5.2.2 Performance Results

The performance evaluation involves tests for evaluating the time the ANN takes for
running in the local and remote machines. Besides this, it is measured the usage of the CPU�s
and memory in the local and remote machines.

5.2.2.1 Time measurements

The results of the distribution tests can be seen in Table 5.3. The time the network
spends to generate its structure for learning is much smaller in the local machine than in the
remote ones. In the same way the time spent to do the learning is much smaller in the local
machine than in the remote ones. Note that the local machine (Fire) and the remote machine
number 1 (Ether) have the same hardware configuration. So the performance differences
from running on the local machine and the remote machine 1 are independent of hardware
capabilities. The difference in performance between the remote machine 1 and the remote
machines 2 (Earth) and 3 (Water) can be delegated due to the difference among its hardware
capabilities.

Table 5.3 � Time tests

CNM Credit Generation Learn Test Transferring

pre

Transferring

pos

Local 0.01 min 00.31 min 0.02 min 0.00 min 0.00 min

Remote 1 2.41 min 33.59 min 2.40 min 0.02 min 0.02 min

Remote 2 5.20 min 59.52 min 4.50 min 0.03 min 0.07 min

Remote 3 3.51 min 49.38 min 3.30 min 0.02 min 0.05 min

• Local machine = Fire

• Remote machines = Ether (1), Earth (2) and Water (3)

The time spent by the ORB to perform the neural network moving from one machine
to another (�Transferring� columns), was considered to be normal and tolerable, interfering
minimally on the overall performance. Even the time difference in transferring the ANN
before and after the generation and learning phases haven�t represented much overhead for
the system performance. Therefore the transferring time is not subject of further time
measurements and evaluation.

The performance of the remote neural networks for network generation, learning and
testing is significantly below the expected values. The time difference between performing

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 181

the learning locally and remotely is significant. It is necessary to understand why such
performance degradation occurred. Was it caused by the distributed implementation at the
application level or a problem generated by the overhead of using an ORB? Why did the first
experiment have good performance and the second one not? The first attitude was to
reanalyze the whole CANN distribution architecture and to perform complementary tests to
try to get clues about the performance bottlenecks, which is detailed in Section 5.5.5 below.

5.2.2.2 Measuring CPU usage

The behavior of the CPU usage during the generation and learning processes was
analyzed. The generation process has different behavior when the local and remote machines
have different hardware. Table 5.4 shows the ANN generation when two similar machines
are used. The CPU of the remote hardware is used more intensively, as expected. When the
remote machine has a hardware inferior in performance than the local hardware, the CPU
usage reaches 50% for both machines as can be seen in Tables 5.5 and 5.6. For the learning
process (Table 5.7), the CPU usage on the local machine goes a little bit higher than the
generation usage on Table 5.4 and the remote machine takes most of its CPU time for
processing, which is the expected result. This performance was similar for all remote
machines.

Table 5.4 � CPU usage for generation on similar hardware machines

Generation CPU
Local 20
Remote 1 80

Table 5.5 � CPU usage for generation on different hardware machines

Generation CPU
Local 50
Remote 2 50

Table 5.6 � CPU usage for generation on different hardware machines

Generation CPU
Local 50

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 182

Remote 3 50

Table 5.7 � CPU usage for learning

Learning CPU
Local 40
Remote 1,2,3 80

Table 5.8 � CPU usage for learning with local hardware inferior than the remote

Learning CPU
Local “Water” 70
Remote “Fire” 50

Interesting was the result shown on Table 5.8. In this case, the chosen local hardware
was the machine Water and for remote hardware the machine Fire. In this test case the local
machine has inferior hardware than the remote machine. In this testing scenario, the CPU
usage was much different than in the case shown in Table 5.7 where the local and remote
machines where the opposite. While performing the learning process on the remote machine,
the local machine kept a very high CPU usage and the remote machine did not increase much
its processing even though the learning process was performed on its memory space. This
behavior was not expected. It shows again that there is much communication/processing
performed by the ORB among the local and remote machines. Being the local machine much
inferior in processing capacity than the remote one, the result is that the remote finishes its
process in advance and has to wait for the synchronized results of the local one.

Another CPU measurement performed was to evaluate what happens when another
process (other running applications) takes the CPU on the local machine. The effect is that
the Java ORB process slows down and the remote machine also diminishes its processing to
something like 3%.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 183

5.2.2.3 Memory measurements

The memory usage depends on the ANN model and the domain problem being solved.
The memory can be precisely measured but the results cannot be generalized to any ANN
model or domain problem. While testing the system the memory of all machines were
monitored and no special demand was detected. Memory measurements for the CNM Model
are presented in Chapter 6 where the CNM performance of the CANN system is evaluated.
One type of memory test performed that gives important information is to verify the
difference in allocated memory when generating the ANN network in the local machine and
when generating it in a remote machine. To evaluate this, two tests were performed:

• Test 1: the CNM for credit analysis was generated on the local machine and its
memory was measured before and after the network generation. After this, the
system was restarted and a new CNM network instance was created and moved
to a remote machine before the network generation. In this second case the
remote machine memory should be used. The memory of the local machine
was again measured before and after the network generation on the remote
machine. The results of Test 1 can be seen in Table 5.9.

• Test 2, the same test done before was again performed but now with 3
instances of the CNM network at the same time. The 3 instances were
generated on the local machine and its memory was measured before and after
the ANN generation. Later, the CANN simulation environment was restarted
and another 3 CNM networks where locally created, but in this case, they
where moved to three different remote machines before generating network
architectures. The memory of the local machine was measured twice: The first
measure was after creating the networks, but before moving them to the
remote location and generating the network architecture; The second
measurement was done after generating the ANN structures in the remote
machines. The results of this test are shown in Table 5.10.

The first test shows that less memory was allocated on the local machine when the
CNM neural network was generated on the remote machine. When the network was
remotely generated, the local machine allocated most of the memory (about 1 MBytes) during
the process of transferring the CNM neural network instance to the remote machine. This
indicates that the ORB allocated good part of that memory to be used on the handling of the

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 184

distribution. Not much memory was allocated on the local machine during the process of
allocating the memory on the remote machine. The remote machine allocated 4616 MBytes
of memory when the remote CNM network was generated.

Table 5.9 � Test 1 � Generating one CNM instance

CNM Credit Local Machine
Before

Local Machine
After

Local generation 72148 75392
Remote generation 72140 73580

The second test shows similar results as Test 1. When distributing the neural networks,
the necessary memory to be allocated on the local machine is significantly less than the
necessary to run the ANN´s locally. Running the 3 CNM instances locally, 9336 Mbytes of
RAM are necessary to generate the 3 CNM neural structures, while running the 3 instances
remotely, the necessary local memory was only 3476 Mbytes. Of this amount, 1404 Mbytes
are allocated when transferring the CNM instances to the local machine, that is, memory
allocated by the ORB to manage the remote instances. The average of memory allocated on
each of the remote machines was 4799 Mbytes.

Table 5.10 � Test 2 � Generating 3 CNM instances

CNM Credit Local Machine
Before

Local Machine
After

Local generation 73168 82504
Remote generation 73116 76592

Those tests show that it is useful to distribute the ANN generation and learning
processes in terms of the memory footprint. When the limitation for generation of an ANN
is memory, it is feasible to use the ORB to distribute the ANN structure. The ORB does not
demand much memory footprint on the local machine and the memory the ANN allocates
on the remote machine is freed on the local machine.

5.2.2.4 Measuring communication time

The performance results taken so far do not encourage the use of the distributed
solution. It is necessary to clearly understand where is the performance bottleneck of the
implemented solution is located. The first attitude before performing new tests was to
upgrade the JDK and Voyager versions assuming that new releases improve performance.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 185

The whole solution was migrated to the up-to-date Voyager ORB version (in that case
the 3.3 version), which demands the whole software migration to the Java JDK1.3 (using Java
HotSpot Client Virtual Machine (build 1.3.0-C, mixed mode)). By simply doing this, the
learning time of the ANN was about 33% better for the remote machine 1 (Ether) as can be
seen in Table 5.11. The learning on the local machine had the same performance.

Table 5.11 � Learning time for JDK1.3 and Voyager 3.3

CNM Credit Learn

Local 00.31 min

Remote 1 23.06 min

One important aspect to evaluate is the distribution behavior of other ANN models
implemented in the CANN environment. Tests were performed then using the
Backpropagation solution and the ART1 solution. Both implementations are quite
straightforward based on the same assumptions done to implement the CNM solution. The
usage of an implementation interface to be used as a proxy to the ANN instance was
reproduced for the two models.

Table 5.12 shows the performance average for the two models running on local and
remote machines. The results for both models are not satisfactory either. The
Backpropagation model performed about 50 times slower than on the local machine and the
ART less than 2 times slower. The learning characteristics of both models are quite different,
the first applies the learning cases many times while the second only once.

The results show that the performance bottleneck quite likely happens on the
communication among the local and remote machines for feeding learning examples. So it is
important to evaluate, especially in the CNM model, how the communication has been
implemented in order to find out a possible performance bottleneck.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 186

Table 5.12 � Learning performance for BP and ART1

 Learn

Local 471 BP
Remote 1 24886

Local 1752 ART1
Remote 1 2623

Another attempt to understand the performance bottleneck is to re-evaluate the
differences between the first experiment with the Kohonen agent and the CANN distribution
solution. There is one main architectural difference: the first migrates the whole application
and does not have to fetch for learning information on the local machine.

Having this in mind, the next step is to isolate the data access by avoiding fetching
learning cases in a distributed way. It means that the source code of the ANN is modified in
order to fetch cases in its own program, not calling remotely to get the necessary data to
learn. The modification is done on the level of the ANN neurons. Instead of fetching the
data from the proxy relations to the Domain on the local machine (see Figure 5.3), the data
are generated at the place the ANN is running. The proxy relations are still built, but the data
are not fetch through them. The data are directly fetched to the input neurons at the
particular node being a fast process.

With this modification the learning time is reduced more than 50%. The result is
shown on Table 5.13.

Table 5.13 � Learning time fetching the learning data locally

CNM Credit Learn

Local 00.34 min

Remote 1 09.13 min

The next modification is not to build the proxy relations to the Domain on the local
program so that neither the data were fetched remotely nor the remote relations were kept.
With this modification the learning time dropped down drastically. Table 5.14 shows the
execution of the CNM learning process at the local and remote machines. One important
aspect of this modification is that while running the learning on the remote machine, its CPU
reached 100 percent of usage while the local machine was stable with nearly no usage. The
communication between the two machines is nearly zero and the whole process has no
dependence to the local machine as happened before. This proves that it is not only

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 187

important to avoid fetching the data via the ORB but also not to build many proxy structures
that can cause overhead to the ORB to manage.

Table 5.14 � Learning time with no proxies to the local program

CNM Credit Learn

Local 00.34 min

Remote 1 02.16 min

The results show that the ORB communication is the biggest problem of the solution
implemented. It is necessary to limit the communication between the local and remote
machines to the absolutely necessary information. The learning and test data shall be available
on the remote machine in order to avoid communication to fetch learning and test data. One
possible solution to this problem is to use an internal database offered by the Voyager ORB.
The database can be migrated to the remote machine together with the agent. Another
solution may be to fetch data in bigger chunks, which means, to transfer more cases at once
and then do the learning or testing locally.

Two other experiments are executed still having no proxy references to test the
performance when 2 ANN�s are learned at the same time. Table 5.15 shows the results when
the first ANN is kept learning at the local machine and the second ANN is sent to the
remote machine to perform the learning. The results are similar to the ones when the ANN�s
are learned separately.

Table 5.15 � Learning time with 2 ANN�s at the same time, one at the local machine and the other at
the remote machine

CNM Credit Learn

Local 00.34 min

Remote 1 02.22 min

The second experiment shows the learning of 2 ANN�s at the same time at the remote
machine (Table 5.16). This experiment is important to evaluate the solution when more
ANN�s are in the remote machine and have to perform any task. It evaluates the influence of
the ORB in such situation. The result is that both learning processes are done twice slower
than before. As the two ANN�s are sharing CPU, it is absolutely normal that the performance
dropped to the half. There is no evidence that the ORB has an extra influence when more
than one ANN is learning at the same time in a remote machine.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 188

Table 5.16 � Learning time with 2 ANN�s at the same time at the remote machine

CNM Credit Learn

Remote 1 (1st ANN) 05.10 min

Remote 1 (2nd ANN) 05.10 min

With the elimination of the ORB communication for fetching data, the only remaining
ORB communication is the ANN learning management. The class CNMManager that always
runs on the local machine still keeps track of the learning process, commanding the fetching
of the learning data and the start of the learning process. It commands the remote ANN to
start the process of learning for each learning case and takes care of getting back its results.
This communication represents most of the remaining time difference between running the
ANN locally and remotely. It could be minimized if the coordination of the learning process
also migrates with the ANN or if it were already installed on the remote machine being able
to simply plug in different ANN�s and coordinate the processing on the particular machine.

5.3 Testing the Voyager communication mechanism

The goal of this section is to analyze in detail the Voyager communication
implementation in order to verify if there are external aspects that could be influencing the
ANN performance results of the sections before. By analyzing this, it is possible to conclude
how communication is influencing on the overall distribution performance. So a small Java
application is defined in order to have a well-controlled communication application.

The implemented Java application tests the communication performance among
remote objects. This test simulates the communication of the CANN framework where input
neuron objects call a method in a remote object in order to fetch its input data. These data
are typically a primitive Java data type such as a double value.

In this experiment, an agent object (consumer) is created and has a reference to an
object (producer) that provides it with randomly generated double numbers. The agent is
moved to a remote program and the number generator object keeps running on the local
program. The agent creates an array of double values and populates it by calling a method of
the number generator object. The method returns one double number so that it has to be
called as many times as necessary for populating the complete array. The algorithm is
explained below:

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 189

- A program is started on machine 1
- The program creates two objects:
 - A random generator (producer) that runs on the machine 1
 - An agent (consumer) that is moved to the machine 2
- When the agent is requested to run (doCommunication) it requests from
the random generator a double number. So that there is a communication
among the objects located in different machines.
 - The random object method getNumber simply returns a randomly
generated double value
 - The agent request as many double values as the size of a pre-
defined array.

The consumer object is a Voyager agent that runs on the remote machine 2. Its method
doCommunication(int) (see Code 5.3), is called when the communication between the agent and
the producer object called RandomGenerator shall happen. The producer object is located on
machine 1 and when called executes the method getNumber() that can be seen on Code 5.4.

Code 5.3 - The agent doCommunication method

public void doCommunication(int arraySize) {
 theDataArray = new double[arraySize];
 for (int i=0; i<theDataArray.length; i++) {
 theDataArray[i] = rGenerator.getNumber();
 }
}

 Code 5.4 - The RandomGenerator object getNumber method

public double getNumber() {
 return Math.random();
}

5.3.1 Measuring the TCP traffic

The TCP/IP network traffic is measured on the net where this communication test
program and the performance experiments were performed. The Windump tool was used to
check for TCP traffic.

The subnet where the machines are located is not isolated but the tests are always
performed in time frames when there is not much competing traffic. At the moment of the
tests there is no significant number of other applications packages. For a total of 10000
numbers exchanged between the remote and local machines, about 20000 application
packages are created. Only about 100 are other packages not related to the application. So
there are no external packages that could influence the overall experiment performance.

The communication packages generated by Voyager are collected and analyzed. They
are TCP/IP packages + level 2 header of 77 bytes (FastEthernet standard has minimal

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 190

packages of 64 bytes). This package has 23 bytes of data. The application send packages with
only one Java double value = 8 bytes. As the packages are very small in size, the Voyager is
not adding data overhead to the overall packages.

From this measurement it is possible to conclude that the Voyager communication
engine and the network infrastructure do not represent an overhead at the level of TCP/IP
communication.

5.3.2 Performance results

The communication experiment runs in two different ways. In the first, there are two
Voyager servers running on the same machine. In that case, the producer and the consumer
objects are located on the same machine though running on different Voyager servers and
Java virtual machines. In the second, two machines are used where two instances of the
Voyager ORB server are running. The producer and consumer objects both run on a
different machine.

For each experiment the number of communication steps (number of time the
consumer calls the producer in order to get the generated double number), are incremented
from 10000 to 50000. For each size, three runs are performed and the average is shown in
Figure 5.4 for running on the same machine and in Figure 5.5 when running on the separate
machines.

Table 5.17 below shows the number of steps of communication, the average results in
milliseconds that the program take to perform all the communication steps for the local and
the remote experiment, and the number of times the remote running is slower that the local.

Table 5.17 � Performance of the communication experiment

Communication Steps Remote Average (ms) Local Average (ms) Times slower

10000 4373 13 328

20000 8281 30 276

30000 12458 33 374

40000 16251 44 372

50000 20189 50 404

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 191

Local performance

0

10

20

30

40

50

60

10000 20000 30000 40000 50000

Array size

M
ill

is
ec

o
n

d
s

Figure 5.4 � Performance running locally

Remote Performance

0

5000

10000

15000

20000

25000

10000 20000 30000 40000 50000

Array size

M
ill

is
ec

o
n

d
s

Figure 5.5 � Performance running remotely

The test is performed using two Pentium III - 500 MHz machines. The used network
has a velocity of 100 Mbps. It shows that the ORB communication can be, on average, 350
times slower when performing remotely than locally. This proves that it is necessary to avoid
as much as possible the communication among the distributed objects. Data that are
necessary for the remote object execution shall be provided to this object using other
mechanisms such as migrating the data together with the agent or accessing them in a
distributed way by special distributed databases, etc.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 192

5.4 Re-implementing the CNM framework

Summarizing, the identified problem with the CNM architecture so far is that it has an
ORB intensive communication from the input neurons on the remote machine to the CANN
simulation environment on the local machine to fetch the data for learning or testing. While
learning, for each CNM combination, its associated input neurons have to fetch data on the
local machine. As the combinations are done over the same input neurons, the same input
neuron is unnecessarily fetching many times the same data on the local machine for different
combinations it belongs to. The goal is then to effectively make the software architectural
changes to minimize this communication, to find a way to have the input neurons populated
only once for each learning case. Two solutions are considered:

5.4.1 A timestamp control for fetching the learning data

Each new learning case represents a new timestamp. For each timestamp each input
neuron has to fetch data only once. If it is requested to run, it checks the timestamp. It has to
fetch data on the local machine only if it is one step before the timestamp of the learning
case. If it is on the same timestamp it simply uses the data already fetched to run and generate
its output. The performance using the timestamp is shown in Table 5.18 and is the same as
the one from Table 5.13 where the learning is done fetching the data locally. This is the
expected result, the ORB references to the local machine are kept but adequately used, and
the data is fetched in the necessary frequency.

The difficulty of implementing the timestamp solution is to adequately keep and
disseminate the timestamp information along the framework. To implement the timestamp,
the input neuron compute method is extended to evaluate the timestamp before performing its
computation. The manager class has the control of the learning timestamp while the input
neurons know their own timestamp. By comparing its timestamp with the learning timestamp
the input neuron knows if it has to fetch data or not.

The problem is that on the CNM architecture there is no direct communication
between the input neurons and the CNMManager class. The CNMManager knows only the
hypothesis neurons, which have communication to the combinatorial neurons through the
upper synapses and so on. The learning time stamp would have to be passed as parameter
along the ANN to the input neurons or to be kept as a class variable at the manager class in
order to be accessed by any class of the framework. The first solution is elegant, but changes

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 193

the interface of the framework methods such as compute. It is not clear whether this change
would be useful for the other ANN models. The second solution is implemented to evaluate
the performance of the timestamp solution, but it is not adequate because it compromises the
parallelism engine once the class variable can only keep the information for the timestamp of
one CNM network at a time. So the main disadvantage of the timestamp solution is that for
an adequate solution it changes the CANN architecture. Perhaps the necessary changes could
be incorporated to the overall framework to cope with such concurrent situations as the
fetching of input data, but its necessity is not evident at this moment for other ANN models.

Table 5.18 � Learning time using time stamp control

CNM Credit Learn

Local 00.31 min

Remote 1 09.48 min

5.4.2 Controlling the learning data fetching

The learning data fetching for the input neurons has to be exclusively controlled by the
manager class. The framework architecture had to be extended to implement such a solution.
The idea is to separate the input neuron computation form its data fetching that was both
performed inside the same method compute. The input neuron compute method that is
responsible for fetching the data whenever called, lost this responsibility. Another method
called fetchData data is implemented to make this task. The compute method is the
responsible only for the computational evaluation of the input value. When the new method
fetchData is called, it accesses the associated Domain attribute and fetches the data.

The CNMImplementation class is modified to have a new method called
fetchDataToInputNeurons responsible for calling all the CNM input neurons whenever they
must fetch new learning or testing data. When the CNMManager class knows that a new
learning step must be performed, it calls the appropriate domain attributes to fetch a new
case and then calls the CNMImplementation new method fetchDataToInputNeurons to fetch
this data to the input neurons. Only after this, the CNMManager calls the
CNMImplementation to do the learning of the case. At this moment the input neuron
compute method is called without fetching data. The input neurons can be called many times
in a learning step that they will not fetch the data again and again.

The results of the tests performed using this solution are in Table 5.19. The overall
performance is better even when the ANN is running locally because it does not lose time

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 194

accessing the Domain unnecessarily. When running remotely the performance is similar to
the timestamp solution that was already expected.

Table 5.19 � Learning time with the change on the input neuron functionality

CNM Credit Learn

Local 00.29 min

Remote 1 09.17 min

The range of experiments done in this section shows that the main situations that
generate ORB communication are:

1. The learning or testing data fetching through the ORB

2. The control of the learning or testing process trough the ORB.

Eliminating the first reason, the performance can be considered satisfactory. The ideal
is to eliminate both, giving to the agent total autonomy regarding its learning process.

The solution shown above solves the first communication bottleneck. The second one,
i.e. the maintaining of the proxies references among the remote and local machines, is still an
issue to be considered. The simple existence of such references decreases the performance
much more than when they do not exist. Other architectural improvements could be
considered here to minimize this situation.

5.5 Future implementation possibilities

The distributed solution can be improved in many aspects such as the synchronization
among the remote and local objects, controlling the learning process in a distributed way and
breaking the ANN structure to run in different machines. Below those possible
implementations are explained in detail.

5.5.1 Synchronization aspects

The solution presented here introduces the possibility of having the trained ANN as
Agents. The ANN agents are able to move to different machines on the network and act
independently. It is possible then to create solutions to problems where multiple machines
shall be verified or controlled at the same time to reach a certain result. Problems like
monitoring certain distributed processes can be implemented in a straightforward manner.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 195

The implementation done so far does not have such a functionality of generating various
agents from one trained ANN and automatically distribute them to pre-defined machines. In
the solution so far the user controls each generated ANN and has to manually send them to
each machine for learning or testing proposes.

Besides using the Agent facet, it is possible to move objects using Voyager Mobility facet.
In this case, the object to move must implement the interface IMobility. In most cases the use
of this facet is enough to implement distributed computation. The Agent facet is useful when
it is necessary to give autonomy to the remote object. In the case of the ANN simulator this
facet is used because, in the future, it is planned to have the ANN learning and testing
performed independently of the local program. The actual solution is not completely
independent because the remote ANN relies on the local simulation program to provide it
with the learning and testing cases from the database.

The existence of proxy references from the remote ANN to the local domain model
generates two problems:

• First, the extra work for taking care of the creation and elimination of proxy
references to the domain model.

• Second, the extra processing time lost accessing the domain in the local
program to get the next data to perform the learning or test process.

To avoid these two problems it would make sense to copy the domain to the remote
program together with the databases for learning and testing. This solution is feasible once
the domain objects are small and Voyager offers a special database service that allows small
databases to move with an object. Such a solution leads to decisions regarding the size of the
moved database and its content. If the learning or testing database were large, it would be too
much overhead to move it entirely. A database service would be necessary to communicate
with the different remote ANN instances sending parts of the database as requested. Such a
solution is certainly necessary to make the remote ANN instance more independent of the
local program, being able to run most of its activities in the remote program, and
consequently improving its efficiency.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 196

5.5.2 Controlling the distributed learning process

The simulator is able to have several independent ANN instances trying to find the
solution to a specific problem. The user should be able to synchronously stop the learning
process of all those ANN instances. This could happen whenever the user wants or when
one ANN instance reaches the problem solution. Such kind of synchronization has not been
implemented yet.

5.5.3 Dividing and distributing one ANN model

As ANNs are essentially parallel processes, it would make sense to use the same
distribution capabilities to divide and distribute one ANN model. This implies:

• Dividing the ANN structure.

• Controlling the learning in a parallel and distributed way.

The breaking of the ANN structure depends very much on its inherent architecture.
Neural networks such as the CNM have a modular architecture being possible to divide its
ANN structure. However, neural networks such as the Backpropagation are complicated
regarding breaking their structure, because their neurons are fully connected from one ANN
layer to the other.

5.6 Conclusion

In the experiments running the whole Kohonen application on different machines, it is
verified that it runs in an acceptable time and velocity. Although the results achieved in this
research cannot be generalized for every distributed application using the Java language and
the Voyager environment, they can be useful as guidelines regarding the distributed
implementations of neural network models under Voyager. The results encourage a more
detailed implementation of distribution facilities under the CANN framework.

Adding mobility to the ANN implementations in CANN is a straightforward task
basically because of the use of the Java language and the object architecture of the CANN
framework. The Java language has several characteristics that are useful in this
implementation:

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 197

• It offers the capability of executing the generated code on any platform, which
together with the use of Voyager makes the distribution of code possible.
Furthermore, the facilities the language offers such as dynamic binding and
polymorphism permitted the implementation of important requirements such
as adding new ANN models at runtime. For instance, the user is able to
develop and add ANN models at runtime to create several ANN instances, and
to try different solutions of the problem at hand. The user is able to execute
these ANN tasks in a distributed way making use of the computer network
infrastructure. Those aspects are considered as very important and, in many
cases, compensate possible performance losses of using the Java language.

• Java implement concurrent programming. Skillicorn and Talia (1998) evaluate
languages for concurrent computation. They argue that it shall be easy to
program, it should have a software development methodology, it should be
architecture-independent, it should be easy to understand, it should guarantee
performance and it should provide accurate information about the cost of
programs. Java covers quite well at least the first four items. Regarding
performance, Java is clearly not reaching the point. It is necessary to consider
the performance losses of the language when running the CANN framework.
The experience is that the possibility of using multiple machines to test
different ANN implementations and CPU�s supported by the parallel CNM
implementation may also compensate this drawback.

• Java has explicit programming for concurrent implementation (Skillicorn and
Talia (1998)). That means the software developers shall take care with all details
of the concurrent implementation. It can be difficult to achieve the best
possible correctness and performance when programming with such a
language. To compensate this, the Voyager library offers a brokering system in
Java. It allows the implementation of mobile objects in a clear and simple way
without much coding effort and without influencing the application objects
implementations.

The software architecture of the CANN facilitates the implementation of mobile
components. This architecture is carefully designed to allow flexible ANN implementations.
The clear definition and separation of the objects that form the architecture, help to choose

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 198

where and how to implement the distribution without changing the implementation done so
far.

The presented solution for distribution of ANN objects opens several application
possibilities. It is possible to develop applications where it is necessary to migrate the ANN
code to perform artificial intelligent tasks on remote machines such as classification,
forecasting and clustering. Imagine having an ANN in each computer where customer
classification shall be accomplished in real-time. A previously trained ANN could be sent to
each machine whenever necessary and be autonomously evaluating the input data. Other
tasks in different application areas such as computer networks management could also be
implemented like: making intelligent routing of messages or intelligent control of the network
resources.

However, the performance results of the CANN distribution solution do not
encourage its usage in a production environment. The time for performing the ANN learning
and testing on the remote machines were significantly worse than the time spent when
running on the local machine, which makes the distribution environment inefficient and
inapplicable at this stage.

Additional tests should be conducted to verify the behavior of distributed applications
when using some other technology. An evaluation of the achieved results in this experiment
also depends on the application in question, which could be considered appropriate for one
application but unreliable for another application. Furthermore, this experiment is concerned
with providing an idea about the time, memory and computer resources someone could
expect to use when building a system in a similar environment, and not to make a judgment
about the appropriateness of time, memory or processing capacity. Such a judgment is
beyond the scope of this experiment and is relative to each particular application.

Some parallel systems permit the load balancing among the participating CPUs (for
example Cray systems). This is certainly an important feature to be implemented by the ORB
when being used to implement CPU critical applications such as distributed ANN learning.
With such a feature the CPU usage could be better tuned for each hardware involved in the
processing and better results could be reached.

Another point to discuss is the number of agents running simultaneously on the same
machine. Tests with more than two agents running simultaneously on the same machine were
not performed because the scope of this work is to investigate the performance of the

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 199

distributed application among several computers, and not to investigate the performance of
the computers when running several applications simultaneously.

Additional topics that could be considered in future work include:

• Implementation of different distribution solutions for each of the considered
ANN models.

• Adding knowledge representation and communication features to the object
agents using for example knowledge communication languages, such as DAML
(The DARPA Agent Markup Language - www.daml.org). Agent
implementation and communication is not explored here, even though the
mobile ANN components are implemented as mobile agents.

• Experiment with other distributed Java development environments such as
Aglets (Aglets SDK, IBM 2000) or Sumatra (The Sumatra Project, Arizona
University).

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 200

6 O p t i m i z a t i o n s o f t h e C o m b i n a t o r i a l N e u r a l M o d e l

The CNM model is explained in detail in Chapter 2. Along this work, complementary
information about its implementation on the CANN framework is provided. The
implementation of the CANN CNM component core construction principles is explained in
Chapter 3 and a parallel solution is presented in Chapter 4. Besides implementing parallelism
specific to the CNM model, this work dedicated to introduce and implement significant
optimizations for its algorithm. This chapter presents the optimizations and empiric results of
its application. The most important optimization aims at taming combinatorial explosion,
which is the main problem inherent to this model.

6.1 CNM Optimizations

The main limitation of CNM is the possibility of combinatorial explosion, since the
intermediate layer grows exponentially. The combinatorial explosion problem is critical
because of memory and processing restrictions that computers have. It is not possible to
previously generate all domain problem hypotheses (represented by CNM combinatorial
neurons) and subsequently evaluate which one must remain or not. Because of this
restriction, until now the CNM model is applied to few areas with a maximum combination
order of 3. Some effort has been made trying to avoid these restrictions by using genetic
algorithms to increase the maximum combination order (Denis and Machado, 1991;
Machado and Rocha, 1992). The next section shows the contribution of this work to this
problem.

6.1.1 Separation of Evidences by Hypotheses

The CNM model is essentially based on the knowledge graphs defined by Leão and
Rocha (1990). During the knowledge graphs construction, the domain expert defines which
evidences and findings have to be considered. He/she can also determine which
evidences/findings relate to each problem hypothesis. This means that for some hypotheses,
a smaller number of evidences/findings can be considered. As the CNM neural network
structure generation is independent for each defined hypothesis, some of them can have its
combinatorial explosion reduced. This happens in reality, for example, in a credit analysis
problem: The expert determined that the evidence sex is important for evaluating bad

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 201

customers but not for evaluating good ones. So, considering a distinct set of relevant findings
for each hypothesis may significantly reduce the search space.

Input Neurons

Output Neurons

M
Sex

F Teen
Age

Adult Senior ...

Good Bad

... ...

Figure 6.1 � Separation of evidences by hypothesis

Figure 6.1 shows how this example would affect the generation of the combinations of
the CNM network. At the time the CNM is generated, the evidence Sex is not considered by
the hypothesis Good; but the evidence Age is considered and all its findings (Teen, Adult and
Senior), are considered in the combinations generation. For the hypothesis Bad the evidence
Sex is considered so that combinations are generated with its findings (Male and Female). It
may also happen that only one finding of an evidence shall be considered for a given
hypothesis. This is the case of the finding Adult for the hypothesis Bad in Figure 6.1. The
other findings of the evidence Age are not considered for generating combinations for the
hypothesis Bad.

6.1.2 Avoiding nonsense combinations

There are some combinations that do not correspond to reality. We call it here nonsense
combination and the CNM algorithm shall avoid its generation. For instance, it does not
make sense to generate combinations of findings of the same evidence. For example, for the
evidence Sex (Figure 6.2), nonsense combinations are those where more than one sex is
considered. A person can�t have two sexes so such a combination shouldn�t be considered. It
is clear and logical, but the original CNM does not consider this kind of situation. This is
done probably with the hope of simplifying the implementation algorithm but resulted in
compromising the overall system�s efficiency.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 202

Input Neurons

Output Neurons

M
Sex

F Child
Age

Teen Adult ...

Good Bad

...
Combinatorial Neurons

Figure 6.2 � Avoiding nonsense combinations

Even if the evidence is modeled as fuzzy, the combination of two of its findings (fuzzy
sets) can�t happen. The fact that the evidence is modeled of the fuzzy type warrants that
more combinations including its findings will be kept after the pruning phase of the learning
algorithm because more than one finding may be considered for a given evidence value. This
behavior is not affected by the fact that combinations containing two findings of the same
fuzzy evidence are not created before hand.

6.1.3 Optimization on the combination order definition and generation

Another approach in order to avoid creating unnecessary combinations is to take a look
at what the others do in order to minimize the threat of the combinatorial explosion. So a
property on which many association rule discovery algorithms (Agrawal et al. 1993) are based
to cope with this problem is considered: Taking a set of selection criteria, the number of
examples which pass such criteria cannot exceed the number of examples selected by any
subset of this selection criteria. For example, if patients were selected from a database with
the criteria: AGE > 30 AND SEX=�FEMALE�, the number of retrieved patients cannot be
larger than the number of patients that would be selected by one of those criteria taken
separately.

Based on such a property, the association rule discovery algorithm Apriori (Agrawal et
al. 1996) first analyses individual items (which are equivalent to the concept of findings), so
that only the ones supported by the examples used in training are combined generating 2-
itemsets (combinations of 2 findings). From the 2-itemset combinations, only the ones, which
are supported by the examples, are expanded generating 3-itemset combinations, and so on.
With this as inspiration, the CNM algorithm for the topology generation has been optimized,

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 203

resulting in a major search space reduction, especially for complex applications with a very
large number of findings and where high order knowledge has to be discovered. The
improved algorithm is shown in Algorithm 6.1.

Algorithm 6.1: New algorithm for CNM learning

Let Hk be a set of domain problem hypotheses;
Let N be an empty CNM network;
Let Fk be the set of findings that occur within the set of examples of Hk;
For each order Od from 2 up to N do
Begin
 Let Nkt be an empty temporary CNM network;
 For each hypothesis Hk do
 Add combinatorial neurons to Nkt by combining Fk with order Od;
 Train network Nkt;
 Prune non-rewarded combinations of network Nkt;
 Add to N network all remaining combinations from Nkt;
 For each hypothesis Hk do

Let Fk be the set of findings that appear on rewarded combinations
Nkt;

End;
Prune the N remaining networks by the original CNM algorithm readjusting the
weights;

In the first iteration of the main �for� loop, the findings that occur associated to each
hypothesis will be considered to generate order-2 combinations. These combinations are
stored in a temporary network, which is trained and pruned. By pruning, all combinations
that are not validated by the examples will be deleted from the network. This pruning is a
simplified version so that only the combinations that are never rewarded during learning
(reward accumulator is zero) are pruned and the weights are not changed. After this pruning,
the remaining combinations are transferred to the network.

As some parts of the network have been pruned, it is expected that some findings that
does not occur in any combination that has been rewarded (which did not occur in the set of
examples), will not be relevant in the next algorithm iteration. Since the complexity of
combinatorial layer generation is exponential, even a small reduction of the number of
findings to be combined has a significant impact on the size of the search space.

After doing the learning loop from the order 2 to the desired order, a final pruning
process is applied over the remaining network. This pruning is the original CNM pruning
algorithm, where combinations that received more punishments than rewards are pruned and
the weights are modified.

The main advantage of this algorithm is the reduction of memory and time resources
for the learning process without compromising accuracy, as no relevant findings are pruned.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 204

Furthermore, it is possible to generate nets with higher orders than with the original (non-
optimized) algorithm. This can be seen in the next section that discusses the performance of
the non-optimized and optimized CNM algorithms.

The optimizations are applied using the original CNM reward, punishing and pruning
calculations. If those calculi are changed, it is necessary to reevaluate the applicability of the
optimization. Furthermore, other methods for optimizing the combination generation are not
considered in this work and may be subject of further research and comparison to the
presented optimizations.

6.2 Test Results

The domain for this test is that of credit analysis. Real customer data, provided by a
company, have been used describing information about customers and what they bought.
The task is to classify the customers as either �good� or �bad� ones. The company domain
expert (credit analyst) defines the relevant evidences and findings. A set of 13 evidences are
identified, e.g. age, sex, order value, type of customer, etc. From these 13 evidences, 32
findings are defined based on finding types such as fuzzy (e.g. age = teen, adolescent, adult,
senior), numerical (e.g. type of customer = 1,2 or 3) or string (e.g. sex = M or F).

To better evaluate the improvements of the optimized algorithm, 3 tests were
performed using 3 CNM networks with the following characteristics:

1. A CNM network generated using the normal CNM algorithm [9, 10] that is
called here non-optimized network (Table 6.1). This network contained all
combinations for the specified 32 findings from order 2 to order 4.

2. A CNM network generated without the non-sense combinations but still using
the non-optimized algorithm (Table 6.2). This test is important for verifying the
size of the remaining network without the non-sense combinations.

3. A CNM network generated by the optimized algorithm (Table 6.3). The
findings are separated by hypotheses, non-sense combinations are eliminated,
and the learning is done step by step by eliminating non-relevant findings based
on Algorithm 6.1.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 205

The Tables 6.1, 6.2 and 6.3 show the results of the 3 proposed tests. The table�s
structure is as follows:

• The column �Comb. order� shows the combination order that the
CNM network must generate for learning. In case of Tables 6.1 and 6.2,
the CNM simultaneously generates all combinations from order 2 to the
order specified in this column. In case of Table 6.3, the CNM generates
combinations step by step for each combination order from 2 to 4
based on Algorithm 6.1.

• The column �Hypotheses� shows the two hypotheses considered in the
testing problem domain: �good� and �bad�. The division into good or
bad is important for the evaluation of other columns that separately
show the number of combinations for each hypothesis.

• The column �Number of generated combinations for order N� shows
the number of generated combinations for each order N.

• The �Remaining rewarded combinations� column indicates the
combinations that were not pruned because they received reward
during the learning process (simplified pruning of Algorithm 6.1).

• The �Final number of combinations� column shows combinations
which remain after performing the original CNM pruning (the last
pruning of Algorithm 6.1).

• The �Findings number� is the number of findings considered for the
combination order N. In these tests, the networks start considering all
the 32 findings for each hypothesis.

• The column �Time� shows the time taken by the learning algorithm to
generate the network and to perform the learning and pruning
processes. A set of 44 cases are used (22 good and 22 bad) for the
learning. The time is given in milliseconds and minutes.

• The column �Memo� shows the amount of memory (in Mbytes) used
for doing the learning, i.e. the amount of memory used for allocating
the CNM network.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 206

• The column �Result� shows the number of correct responses for each
hypothesis after testing another data set with 44 cases (22 good and 22
bad).

Table 6.1 - Non-optimized network for order 4

Number of generated

combinations for

order

Time Comb.

Order
Hypotheses

2 3 4

Remaining

rewarded

combinations

Final number

of

combinations

Findings

number

µs Min

Memo Result

4 Good 496 4960 35960 7785 3306 32 495891 8:15 40936 15

 Bad 496 4960 35960 7636 3172 32 16

The columns �Remaining rewarded combinations� and �Final number of
combinations� should have the same values for the three algorithm versions. The first test
(Table 6.1) has different values due to remaining combinations among findings of the same
fuzzy evidence. Those combinations should be eliminated since two different values of one
evidence are forbidden. However, this sometimes occurs with fuzzy evidences because two
different fuzzy values can be presented to the network at the same time in a single case (e.g.
an age 45 can be considered 0.5 adult and 0.5 senior). Thus, there will inevitably be some
non-sense combinations remaining at the end of the learning process. This difference is not
encountered in the test types two and three because their nonsense combinations are not
generated. It is important to realize that these remaining nonsense combinations are not
strong enough to be activated, and do not influence the correct performance of the network.

Table 6.2 - Non-optimized network for order 4 � only eliminating non-sense combinations

Number of generated

combinations for

order

Time Comb.

Order
Hypotheses

2 3 4

Remaining

rewarded

combinations

Final number

of

combinations

Findings

number

µs Min

Memo Result

4 Good 470 4196 25409 6968 2900 32 321328 5:21 28220 15

 Bad 470 4196 25409 6864 2809 32 16

The analysis of the findings, which are eliminated during the optimized learning, is
equally important. In test type 3 (Table 6.3), after the learning and pruning of order 2, it is
verified that some findings are eliminated, reducing to 28 findings for the �Good� hypothesis
and to 26 findings for the �Bad� hypothesis. The next learning order only generates

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 207

combinations for those remaining findings, greatly reducing the overall size of the generated
network. In this problem domain, the number of findings does not reduce for the orders
larger than 2.

Table 6.3 - Optimized network for order 4

Number of generated

combinations for

order

Time Comb.

Order
Hypotheses

2 3 4

Remaining

rewarded

combinations

Final number

of

combinations

Findings

number

µs Min

Memo Result

2 Good 470 - - 297 - 32 3938 0:03 1180 -

 Bad 470 - - 271 - 32 -

3 Good - 2768 - 1587 - 28 31750 0:31 3204 -

 Bad - 2244 - 1514 - 26 -

4 Good - - 14441 5084 2900 28 118281 1:58 17760 15

 Bad - - 11001 5079 2809 26 16

The time consumed for the learning process shows a significant difference between the
test type 1 and the test type 3 (non-optimized to the optimized). The optimized network
spent 68.95% less time than the non-optimized network.

The tests also show the economic use of memory through the optimized learning
algorithm. The optimized network (Table 6.3) use only 43.38% of the memory compared to
the non-optimized (Table 6.1). Because of such memory savings during the learning, it is
possible to generate the neural network up to order 5 using the optimization algorithm. It is
not possible to generate the order 5 for the non-optimized algorithm because there is not
enough memory to support all the combinations generated at the same time.

It is possible to verify this economy in memory during the CNM learning. With the
non-optimized algorithm, the combinations (for all orders) are generated and maintained in
memory simultaneously. For Tables 6.1 and 6.2 it is necessary to add the orders 2, 3 and 4 of
the column “Number of generated combinations for order” for both “good” and “bad”
hypotheses. For the optimized algorithm (Table 6.3), it is only necessary to add the
“Remaining rewarded combinations” of previous orders, and the column “Number of
generated combinations for order” for the order in learning process. Considering learning
order 4, for the non-optimized network (Table 6.1), the total number of combinations is
82832 while for the optimized network (Table 6.3) it is 29111, which means a 64.86%
reduction. It is important to remember that the number of generated combinations depends

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 208

on the combination order and on the domain model. Thus, it may change very much from
one application domain to another but the optimizations, in terms of the number of
generated combinations, will always be relevant.

6.3 Conclusions

It is important to reinforce/summarize the optimizations results obtained by the
algorithm proposed here:

1. About 1/3 of the time for learning.

2. About 1/2 of the memory used.

3. About 1/3 of the combinations generated.

4. Combination order up to 5.

5. Same classification quality.

The optimizations presented have significantly reduced the generation of the
combinatorial layer of the CNM model. In the approach presented here, relevant findings are
separated in a subset for each hypothesis (reducing the number of findings to be considered)
and nonsense combinations are avoided. A major search space reduction has been achieved,
as the generation of combinations is controlled in order to avoid the pre-generation of all
possible combinations for a given combination order. A new algorithm with such
optimizations is proposed, implemented and tested. The adequate software architecture
makes it possible to consider each detail in the sense of best using the computational
resources to make the CNM model applicable. Finally, the CANN CNM component
implements the two algorithms, the original and the optimized.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 209

7 A N N s i m u l a t i o n

In this chapter the developed CANN simulation environment is explained in detail. Its
functionality is shown and its strong and weak points are carefully analyzed. To better
understand these aspects other simulation environments are also analyzed to form a
background. So the goals of this chapter are twofold:

• To show the CANN simulator functionality and analyze it.

• To analyze other simulators and compare them to CANN.

To better understand what is going to be analyzed it is important to understand what
kind of ANN simulation tools exist and what characteristic are taken into consideration in
order to evaluate the simulators. The ANN development and simulation tools can be divided
into three categories (Kock, 1996):

• Menu based/graphic oriented systems � Systems that allow the user to
manipulate the ANN models via a graphic oriented interface. In general, the
user can instantiate new ANN instances and manipulate them based on
parameterization. Examples are: SNNS (Zell, 1995); NeuralWorks
(NeuralWare, 1995); and ECANSE (SIEMENS AG, 1998).

• Module libraries � Software libraries programmed in a general purpose
language such as C or Java. In general the ANN networks can be instantiated in
a user program and appropriately accessed via parameterization. Sometimes the
libraries offer extension facilities of the core library software. Examples are:
Xerion (Camp, 1993); SESAME (Goddard et al. 1989); and ABLE (IBM, 2000).

• Specific programming languages � Systems that offer a specific
programming language for creating ANN. They may include a library of ANN
modules already implemented in that language. Examples are: Aspirin
(Leighton, 1993) and CONNECT (Kock et al. 1994).

The simulators may belong to more than one category but usually one aspect is
stronger, justifying its categorization. There are some criteria that can be taken into
consideration when implementing and evaluating a simulation tool. The importance of one

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 210

criterion may vary from user to user so that it is not important that a simulation tool
implements all the criteria but properly identifies which ones are important for each
application situation. Some accepted criteria are:

• System handling � The user interface should be easy to use and learn. The
user may find proper information about the ANN abstractions offered by the
tool and may have tools to understand the results of the performed simulations
such as graphics, etc.

• Flexibility � The simulator should support a minimal set of pre-built relevant
ANN models and it should be easy to play around with those models by
changing topology, learning rules, etc. The flexibility has much to do with
software design principles and reuse of the whole simulation software pieces.

• System integration � The tool should be able to integrate with other systems
on the pre- and pos-processing of the ANN. For instance to have tools for
fetching data and for facilitating the use of the learned ANN on other systems.
The portability of the simulation tool is also an important aspect of integration.

• Pragmatics � The system scalability is an important aspect to be considered
because of the nature of the ANN simulation that can quickly enlarge and take
the environment resources.

Taking those criteria into consideration, some specific aspects that are relevant to this
wok when developing and analyzing simulation environments are listed on the Table 7.1.

When the evaluating simulation tools it is important to consider, from this work point
of view, the implemented software engineering principles. For instance, it is relevant to verify
check whether the development is done taking care of OO principles, frameworks concepts,
design patterns, and components technology. There are not many ANN simulation tools that
can clearly be included in this group. In this work two of such tools will be analyzed:
ECANSE (SIEMENS AG, 1998) and ABLE (IBM, 2000).

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 211

Table 7.1 � Criteria for analysing ANN Simulators

System
handling

• GUI facilities
o Data visualization
o Visual programming
o GUI framework
o ANN visualization

Flexibility • Components
o Level of abstraction
o Reusability
o Deploy facilities
o Testing facilities

• Several ANN and domain at the same simulation environment
• Including ANN components at runtime

Integration • System and components portability
• Data

o Access � ASCII, Database
o Manipulation/conversion facilities
o Domain modeling

Pragmatics • Scalability
o Distribution facilities
o Simulation and ANN parallelism

The three simulation environment characteristics are explained in detail along the rest
of this chapter.

7.1 The CANN simulator

Taking the classifications for the ANN simulation tool introduced above, it is possible
to classify CANN as a module library because its extensibility is done via software
programming. As already explained before in Chapter 3, the CANN components implement,
in general, whitebox frameworks that can be extended either by inheritance or by composition.
However, it is also possible to consider CANN as a hybrid solution because a basic graphic
simulation environment was already built. The ANN GUI framework generalizes some
functionality management for any ANN model and there are also facilities for creating and
editing domain models and data converters. The simulation environment forms a kernel for
the simulation of ANN extended from the CANN components.

The main goals for building the CANN simulation environment in this work are:

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 212

• To have an environment where to perform ANN simulation using the CANN
components.

• To get experience implementing a general GUI for ANN simulation.

The main characteristics of the CANN simulation environment are:

• Several ANN can be instantiated and simulated at the same time.

• Several domain can be modelled and used at the same time by different ANN
models

• The ANN simulation can be distributed to the networked computers.

Anybody who wants to use the CANN only as a simulation environment through the
already existing ANN components does not need to understand the inner programming
characteristics of the CANN component frameworks. However, the user who would like to
extend the CANN functionality does need to understand the inner programming
characteristics. As CANN is a whitebox framework the whole source code is available to the
programmer so that he is able to understand the core software details and change it. Along
this section, the CANN functionality will be analyzed in detail. The CANN components that
implement core functionalities may be freely cited without adding details. To fully understand
the software engineering details of those components it is necessary to read Chapter 3.

7.1.1 The Project

The CANN simulation environment implements one instance of the CANN Project
component. The simulator does not allow opening more than one project at the same time. A
created project may contain any number of CANN Domain component instances and
CANN ANN components instances. Figure 7.1 shows that the project called twonets.prj is
already opened and the actions that can be applied to project are shown as well. The user can
perform the following actions:

• New - Create a new project.

• Open - Open a project.

• Save - Save the opened project

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 213

• Save As - Save the opened project with a new name.

• Close - Close the opened project.

• Exit - Exit the CANN simulator.

At the bottom of the frame there is a status bar that shows important messages to the
user, in general, relevant results of his/her actions or errors.

Figure 7.1 � Actions over a CANN project

The creation of a new project presumes the creation of new domain and ANN
instances. Next, the creations of those are explained in detail.

7.1.2 The Domain

Figure 7.2 shows the possible actions that can be executed over the Domain:

• Select � The user can create new domain instances and select one to manipulate
its hypothesis and evidences definition.

• Evidences � Create and edit domain evidences.

• Hypotheses - Create and edit domain hypotheses.

• Data Sources � Actions over the data sources for learning and testing.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 214

• Choose - Choose the type of data source, it is an instance of the Fetcher
CANN component (e.g. ASCIIFetcher).

• Learn � Choose the data source for learning based on the selected type (e.g. a
text file).

• Test � Choose the data source for testing based on the selected type.

Figure 7.2 � The possible actions over the Domain

 Figure 7.2 shows that the project twonets.prj is open. It shows also between parentheses
the name of the selected domain, in that case XOR. After creating a new project the user
must create the domain, which can be done by the Domain-Select menu. Figure 7.3 shows the
Domain select dialog. Here the user can create a new domain simply by typing the name and
clicking on the Add button. The created domain is then listed on the top dialog list of domain
names where, at Figure 7.3, the XOR and Bi-Dimensional domains are listed. The user may also
select between the two domains by using the Select button, or remove an existing domain
from the list.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 215

Figure 7.3 � Creating or selecting a domain model

After creating the Domain instance, it is possible to return to the main Domain menu
and create the hypotheses and evidences of the selected domain.

7.1.2.1 The data converters

Before creating any evidence or hypothesis it is necessary to choose the type of data
converter that will be applied for the given domain. The converters are subclasses of the
Fetcher class and in the case of Figure 7.4 the ASCIIFetcher and DatabaseFetcher are available.
The second is not fully implemented. At the moment, the CANN simulation environment
does only work with ASCII file converters.

Figure 7.4 � Selecting the data converter

By setting the converter types the user is also automatically selecting the type of two
implemented converters: the one that will be implemented for fetching the data for the
domain, that means selecting a case from the case base; the other for the evidences and
hypothesis, that means selecting the exact data inside the case that belongs to the given
evidence or hypothesis. In this example, the domain will have associated an instance of the
ASCIIFetcher component. In the same way, instances of the EvidenceASCIIFetcher will be
automatically associated to the evidences and hypotheses at the time they are created. While

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 216

creating these evidences and hypotheses the user will have to set the necessary values for the
implemented EvidenceASCIIFetcher.

After the selection of the converter type, it is possible to select the data sources based
on the converter type. For the ASCII file converter, the dialog of the Figure 7.5 appear to the
user, where he/she can browse the file resources and select a given ASCII file (Open button).
In the example of Figure 7.5 the file C:\CANN\XOR_BP.txt is selected. The user can also
set the number of examples (cases) that must be considered from this file as learning
examples. He/she may also set whether the examples shall be selected serially from the first
example or randomly among the given examples inside the file. The dialog for setting the
testing data file is very similar.

Figure 7.5 � Setting the learn data source

7.1.2.2 The Evidences

The evidences defined for the XOR problem can be seen in Figure 7.6. In this dialog,
the user can Edit, Add or Remove evidences to and from the domain model.

Figure 7.6 - List of Evidences

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 217

Experts use evidences to analyze the problem in order to come up with decisions.
Evidences in the case of the XOR problem would be the values that represent the two
variables analyzed in a XOR clause. In the example, the XOR problem has two input
variables so that two evidences are created. The modeling of the evidences and hypothesis
may not be the same for different ANN models. In general, the way the problem domain is
modeled must consider the ANN model that it will be applied. For instance, modeling the
XOR problem for the Backpropagation and CNM models are different. Figure 7.7 shows the
dialog that is used to add or edit evidences. In the example the evidence Input 1 has been
edited.

Figure 7.7 � Editing one Evidence

The evidence may have more than one attribute of different types. The Input 1 evidence
in Figure 7.7 has one attribute called I1 of the Numeric type. The attributes of an evidence are
responsible for preparing the learning or testing data for an input neuron of the ANN
component. The attributes implement the necessary data conversion to turn the input data
into something that the ANN input neuron is able to process. The attributes of the Numeric
type simply warrant that the value be a numeric (float in that case). The String attribute
implements a string that is used to compare with the given input data. If the strings are
identical it returns the numeric value 1, otherwise it returns the value 0. The Fuzzy attribute
applies a fuzzy function to the given input and returns the result of the function, a numeric
value from 0 to 1. Finally, the Range attribute is a specialization of the Numeric attribute that
returns 1 if the given input value is inside its defined numeric interval, otherwise it returns 0.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 218

The button Fetcher on Figure 7.7 is used to configure the evidence converter. Figure
7.8 shows the implemented dialog for the EvidenceASCIIFetcher. In this case the user must
define the columns where to take the date in a given case. The case inside an ASCII file must
be organized as records. Each case is a record or a line on the file. Each record contains the
data for all attributes of a given case. The attributes data shall be organized in determined
positions inside this record. This is the most basic way of organizing an ASCII flat file. It is
possible to implement other fetchers to implement coma-separated files, or even files based
on XML definition.

Figure 7.8 � Evidence Fetcher

In the example of Figure 7.8, it is defined that the evidence Input 1 is located in the
position from 0 to 0 in the file, which means the first column of the record. The From
position starts on zero, so the first column of the file must be considered the column zero.
The To position determines the last column that must be taken (From and To are �inclusive�).
The attribute value is taken as a string and converted by the modeled evidence attributes
based on its given type as already explained.

7.1.2.3 The Hypotheses

The hypotheses can be created and edited in a similar way as the evidences. There is a
list of hypotheses that is similar to the list of evidences of the Figure 7.6. The dialog for
creating/editing a hypothesis can be seen in Figure 7.9 and is very similar to the evidence
dialog as well. This dialog has the same functionalities as creating the evidence fetcher and
the evidence attributes. Besides this, there is a list of the related evidence attributes. This list
was specially created for the CNM optimized model introduced in Chapter 6, but turned out
to be important for all the CANN components. This list defined which evidence attributes
shall be considered in the creation of the ANN topology, given a certain hypothesis. Usually
all the modeled evidence attributes are associated to all hypothesis. In the example, the
evidence Output is associated to all modeled evidence attributes. Because of this association it
is necessary to create first the evidences and its attributes and then create the hypotheses.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 219

Figure 7.9 � Editing one Hypothesis

In the example, the XOR problem has only one output so that one hypothesis was
modeled and called Output. It has only one numeric attribute called Output as well. In the case
of the Backpropagation ANN component this attribute will be associated to the output
neuron and during the supervised learning phase it will provide the learning cases results to
be compared with the ANN calculated output. An attribute is always associated to one ANN
input/output neuron. The attributes defined for the evidences and hypothesis are used to
automatically build the ANN topology.

7.1.3 The ANN simulation

Figure 7.10 shows the menu alternatives for adding a new ANN component to the
CANN simulation and for managing the simulations of the ANN instances.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 220

Figure 7.10 � Neural Network menu

7.1.3.1 Adding ANN components at runtime

The user is able to add at runtime any ANN component through the menu Neural
Network - Add New Model. Figure 7.11 shows the dialog used for including new ANN
components. In the example, the components for the Backpropagation and SOM ANN
models are already included. To include new models the user must simply type the name of
the component and the simulator will find it on the appropriate CANN path. The ANN
components are the concrete classes of the NetManager. In the example the CNM component
name was typed, it is necessary simply to press the button Add to have it plugged to the
simulator.

Figure 7.11 � Plugging a new ANN component at runtime

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 221

7.1.3.2 Creating ANN instances

The creation of an ANN instance based on the added components is done in the dialog
shown on Figure 7.12. The user gives a name for the ANN instance he/she is creating, for
instance SOM 2. The ANN component can be selected using the Model combo box. This
combo shows the models added before on Figure 7.11 dialog. The ANN instance will also
have an associated domain instance that is selected from the already created domains using
the Domain combo box.

Figure 7.12 � Creating a new ANN instance

The variable IP is disabled because it is only informative. It means that the ANN
instance is created and run on the IP of the local host at port 7000, that is, the address where
the Voyager server is running. The ANN instance starts running on the Voyager default IP
and port and can move to another host under the user�s choice. This aspect is explained
further in Section 7.2.3.3.

The dialog of Figure 7.12 is called when pressing the button Add on the Simulating
ANN�s dialog of Figure 7.13.

7.1.3.3 Simulating the ANN instances

Figure 7.13 shows, on its upper list, three ANN instances. The first two (BP 1 and
SOM 1) were previously created and were persisted within the project twonets.prj. A third
ANN instance was created when creating the Figure 7.12 example. The Status list below
reports the user�s actions and occasional errors. The printed message of the example is
reporting that the SOM 2 instance was successfully created.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 222

Figure 7.13 � Managing the ANN simulation

In Figure 7.13, the buttons Open and Close are used to open or close the ANN instance
simulation GUI that is shown on Figure 7.14.

Figure 7.14 � ANN simulation frame

For simulating an ANN a GUI framework is created, which is formed by a set of
generic Java classes based on Frame and Dialog classes that are used by any ANN instance.
The details of this implementation are already explained in Chapter 3. In the case of Figure
7.14 it is running the Backpropagation instance called BP 1. The menu Neural Net offers the
possibilities to configure the inner ANN component, reset - meaning creating a new network
structure with new weights, save the neural network instance and close the frame.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 223

Figure 7.15 shows the dialog where the user can choose the appropriate learning
parameters for the Backpropagation ANN instance. As already explained before, this dialog
must be implemented for each different ANN model (see Chapter 3).

Figure 7.15 �Backpropagation configuration

The menu Simulate shown in Figure 7.16 offers the alternatives to execute the ANN
moving, learning and testing (called here Consult). The Help menu is not implemented yet. At
the bottom of the dialog there is a status bar to print information and errors to the users.

Figure 7.16 � The Simulate menu

Figure 7.17 shows the dialog called by the Move menu. In this dialog the user can
specify a host IP and port where to move the ANN instance, making use of the mobility
characteristic of the ANN components. The mobility is explained in detail in Chapter 5.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 224

Figure 7.17 � Moving the ANN component to run in a remote machine

Figure 7.18 shows the learning dialog. In this example the Backpropagation network is
generated for the given XOR domain problem in 20 milliseconds. The learning was
performed for the XOR problem as well, and succeeded at 144 epochs taking 1182
milliseconds. In this dialog the user can generate new nets, start, stop and restart the learning.
The learning is performed based on an ASCII file that was already defined by the
implemented Fetcher at the ANN associated Domain instance.

Figure 7.18 � Backpropagation learning the XOR problem

Figure 7.19 shows the dialog for testing a case base. It is showing a case base formed by
the XOR problem being tested by the Backpropagation learned ANN. The test is performed
based on an ASCII file that was already defined by the implemented Fetcher at the Domain
instance. The cases show the input values for I1 and I2 (Input 1 and Input 2 evidences and I1
and I2 attributes of these evidences), having 0 for false and 1 for true. The ANN output
result is a numeric value between 0 (false) and 1 (true). The Figure shows the network

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 225

performing properly for the first three cases. In this dialog it is possible to start, stop, restart
and reset the testing of the case base.

Figure 7.20 shows the testing tool/dialog where the user has the chance of building at
runtime a case to be presented for the ANN. In the case, the user did not select the Input 1
meaning that this input evidence must have value zero (false) as activation. The selected
Input 2 will have activation 1 (true). The evaluation of this case to the XOR learned
Backpropagation network gave the output result of 0.866, that is, a value next to value one,
meaning (true).

CANN does not have a dedicated component for graphical data visualization.
However, it is possible to integrate visualization graphics. It enables the user to better
understand the ANN data input or produced output, or even the ANN weight structure, as
can be seen in the Figure 7.21, where it is possible to see the SOM weights when learning the
bi-dimensional domain problem.

Figure 7.19 � Backpropagation testing the XOR problem

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 226

Figure 7.20 - Performing the testing of a user case

The CANN functionality and implementation aspects shown so far provide an
overview of what this simulation tool is capable. The system is not complete in the sense of
GUI facilities but already incorporates some important aspects, such as the ANN GUI
framework that makes the simulation operation unified for any ANN model. Data and ANN
visualization facilities appear in very simple forms and or are built programmatically.

The strongest part of the CANN framework is its flexibility. The component
frameworks are tied together on the tool in a way that the programmer can easily create new
ANN models and include them to the environment. The component framework offers
different levels of reusability and strong deploy and portability capabilities, due to its standard
implementation as JavaBeans. The simulation environment is able to manage several problem
domains running different ANN models. It is also possible to include new ANN components
at runtime. There is an easy way of accessing learning and testing data via specific user
configured components. The data can also be converted by the ready-made converter
components or by extended converter components. There is no database access component
implemented. The simulation environment scales well, it is able to run ANN�s that allocate
huge amounts of memory or CPU processing. Thanks to the Java portability, memory
management and threads implementation, the system is able to properly allocate the machine
resources in order to support big ANN structure and long learning simulations.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 227

Figure 7.21 � SOM learning graphics (6 snapshots)

The CANN simulation environment is not a finished system, having much to evolve.
However, its core characteristics presented here show that it already supports some of the
most desirable characteristics for ANN simulation. Next, two other simulation tools are
analyzed in order to compare with the CANN and give hints on what can be done in its
future developments. Table 7.2 resumes the CANN simulator characteristics.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 228

Table 7.2 � Resuming CANN characteristics

Characteristic CANN
Data visualization !

Visual programming
GUI framework !

High level of abstraction !
Reusability !

Deploy facilities !
Testing facilities

Several ANN and domain !
ANN components at runtime !

System and components portability !
Data Access � ASCII, Database !

Manipulation/conversion facilities !
Domain knowledge modeling !

Distribution facilities !
Simulation and ANN parallelism !

7.2 Analysis of ANN simulators

There are some well-known ANN simulation environments available academically and
commercially (see Section 7.1). The intention here is not to be extensive in analyzing as many
tools as possible, but to pick from these well-known ones some that are up-to-date and that
implement software engineering characteristics that make them similar/competitive to the
CANN principles and ideas. In that way, it is important to understand in which aspects they
differ, when one or the other makes better or worse implementation choices, and what
CANN can learn from those tools. The first analyzed tool is the ECANSE (Environment for
Computer Aided Neural Software Engineering), which is developed by SIEMENS and is
commercially available. The second is the ABLE (Agent Building & Learning Environment),
a research project at IBM.

7.2.1 ECANSE (Environment for Computer Aided Neural Software
Engineering)

The ECANSE demo version 2.02.2 is analyzed. It is a visual development, simulation
and testing tool where the user can create mathematical simulations including fuzzy sets,
ANN and genetic algorithms. The ready-made ANN models are SOM, Backpropagation,
Hopfield and RBF (Radial Basis Functions).

The ECANSE objects are represented visually on the simulation environment as can
be seen in Figure 7.22. A component has input and output blocks that permit the connection

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 229

among them using the connector objects. Data flowing among objects can be two types: the
C basic data types or pre-defined derived vector types. A configuration is a combination of
the objects in a data flow as exemplified in Figure 7.22. The data flowing through the
connectors can suffer the necessary transformations to be properly treated by the next object
on the flow.

Figure 7.22 - ECANSE visual simulation environment

Each object can be parameterized when created. For example, the learning parameters
can be set while instantiating an ANN component. There are parameters that may change in
runtime. The overall functionality is based on time discretization. Each element on a
configuration has its time control (time step). Learning and testing phases can be defined and
separate data for each phase can be defined as well.

ECANSE was developed in C++, taking care of OO concepts and reusability. The
programmer�s version allows to extend the system. Batch programming is available to
automate already finished work, which means, to make simulations as a batch job. The
system is available for Windows and Unix machines.

ECANSE is based on a system kernel that provides object-oriented mechanisms to
derive classes from the kernel classes. It has two main classes from which the others shall

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 230

derive: the AnyObject and the EcanseObject. The AnyObject implement the ECANSE
mechanisms that are required for simulation (so called static mechanisms), such as load, save,
copy, paste, parameterization and visualization. The EcanseObject derives from AnyObject and
takes care of the dynamic mechanisms required for simulation such as the definition of object
input and output, connecting outputs to inputs and executing an algorithm.

Those static and dynamic mechanisms of ECANSE are generic, working for all objects
derived from AnyObject or EcanseObject. Such derived class describes its attributes and
methods based on those generic descriptions. As a consequence, it easily integrates into the
ECANSE environment. This mechanism ECANSE implements is similar to the concepts of
interface and abstract classes on the Java Language that are extensively used to implement the
generic solution of the CANN Framelets.

ECANSE implements a complete framework for building the visualization of its
components. It provides generic means for implementing the visual control of object
parameters and methods execution. By implementing specific interfaces any object can be
included and manipulated on the visual simulation environment.

Derived EcanseObjects have to implement two specific methods that are responsible for
the object simulation capabilities. Those methods are: algorithm() and reset(). The algorithm()
methods defines what the object performs during a simulation step, typically the outputs are
calculated from the inputs, the internal values or state variables and the parameters. The
EcanseObject implements a synchronization mechanism that warrants the appropriate access to
the input and output values in a simulation flow. The programmer also has to be aware of
what variables and parameters he/she can or cannot modify inside the algorithm() method.

The reset() method resets the EcanseObject internal variables. The user must implement
this method in order to initialize any user-controlled variable. Besides this, resetting the
object results in the initialization of the synchronization for data transfer and the setting of
time counter to zero.

Neural Networks ECANSE objects also shall implement some methods that are useful
for controlling its learning and testing phases such as: is_learning(), is_end_epoche();
is_begin_epoche(); set_learning() and set_testing(). The programmers manual provides a template
for adaptive objects where the programmer can easily add its own code for creating ANN
objects by implementing the methods to override.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 231

The ECANSE open API does provide objects at a high level of abstraction, in general
math functions or complete ANN models. There are no objects that could help with the
creation of new ANN models. The available components have a black box reusability nature.
The user/developer can simply use them on the visual programming environment only by
understanding its public interface, not being necessary to understand the inner code.

There are no facilities to deploy the ECANSE components in other systems or
applications. The components were built to run only inside its simulation environment. This
aspect compromises the applicability of the resulting learned ANN�s very much.

ECANSE implements objects to perform tasks such as selecting data from a file and
transforming it to be accessed by the ANN. The manipulation of ASCII file is very rich but
there are no alternatives for direct access to databases. The problem domain modeling is
implemented using those data access objects. The data are organized by the data access
component and the ANN component input is configured in a way to be prepared for
receiving this modeled data. ECANSE approach for implementing data fetching and domain
modeling is data centered, being a very simply approach. Nevertheless, it is very complete
and provides very good reusability. It forms a good example for CANN evolution of its
equivalent components.

The ECANSE environment GUI facilities are absolutely satisfactory. Its visual
programming environment is very easy to use and intuitive. It includes components for
visualizing data as 2D and 3D graphics, besides enabling the visualization of the ANN inner
data such as the neurons weights.

ECANSE offers parallelism at the session level the same way CANN does. In
ECANSE more than one ANN can run in parallel by creating two configurations, which is how
a visual program is called inside the simulation environment. The two configurations may
contain instances of completely independent objects that can run simultaneously.

There is no information about how the ANN models were implemented, whether they
have implemented parallelism inside the ANN structure. There are also no ways for running
the simulations in a distributed way such as the ones implemented in CANN. Another
concept that is not implemented on the simulation environment is the possibility of including
new ANN components at runtime. Table 7.3 resumes the ECANSE simulator characteristics.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 232

Table 7.3 � Resuming ECANSE characteristics

Characteristic ECANSE
Data visualization !

Visual programming !
GUI framework !

High level of abstraction !
Reusability !

Deploy facilities
Testing facilities

Several ANN and domain
ANN components at runtime

System and components portability !
Data Access � ASCII, Database !

Manipulation/conversion facilities !
Domain knowledge modeling

Distribution facilities
Simulation and ANN parallelism !

7.2.2 ABLE (Agent Building and Learning Environment)

ABLE (IBM, 2000) is a research project at the IBM T.J. Watson Research Center
(http://www.watson.ibm.com/). The evaluated ABLE version is the 1.2a (December 7,
2000). The main ABLE goal is to build hybrid intelligent agents (AbleAgent) that include both
reasoning and learning. It provides a framework for constructing components (AbleBeans)
that implement intelligence coming from specific Artificial Intelligence algorithms including
ANN. It also includes an IDE (the AbleEditor) for building the agents. The core AbleBeans
includes beans for reading and writing data from text files, for data transformation and
scaling. ABLE is developed in Java and its components are standard JavaBeans.

The AbleAgent is an encapsulated application program that is built using AbleBeans and
aggregates data, property, and event connections. Therefore, an AbleAgent is said to be a
container of AbleComponents. There are some predefined ANN components such as
Backpropagation, SOM and RBF. The ANN components can be plugged to data
components on the AbleEditor in order to perform simulations. There are specific beans to
import and export data from/to text files and perform the necessary data transformations to
apply to the ANN components. AbleAgents can be serialized, so that the user can save them
using the AbleEditor.

ABLE is a toolkit for developing and deploying hybrid intelligent agents and agent
applications. The agents are considered hybrid because they can combine different
methodologies such as fuzzy sets, ANN�s, genetic algorithms and rule-based systems.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 233

AbleAgents are said to be autonomous software components because an AbleAgent can run on
its own thread of control or can be called synchronously by another agent or process either
through a direct method call or by sending an event. AbleAgents are situated in their
environment through the use of sensors and effectors, which provide a generic mechanism
for linking them to Java applications.

AbleAgents can be accessed remotely using Java RMI. However they have no mobility
capabilities, so they can�t be distributed at runtime in order to use the machine resources
available on the network. As part of the ABLE project, there is a plan to build a FIPA-
compliant agent platform in Java. FIPA, the Foundation for Intelligent Physical Agents
(http://www.fipa.org), is an international standards body working toward agent
interoperability.

The ABLE user can extend the system core classes like text file I/O, data
transformation, neural networks, and fuzzy and Boolean reasoning. By packaging the
extended classes as beans in a Java Archive (JAR) file, it can be plugged into the AbleEditor to
build and debug an application consisting of multiple beans and connections.

The user is able to extend the framework by extending the AbleObject or
AbleDefaultAgent base classes. The beans integration is quite flexible having possibilities for
tight or loose integration. In the first case, using method calls and running on the
application's thread of control, and in the second case, using event passing and some or all of
the beans could have their own thread of control. Data can be shared between beans by
accessing bean properties held in the container agent, or data can be passed between beans
using the data flow (buffer) connections.

The major design aspects that developers have to take care of while extending the
ABLE agents are:

• Threading � The user shall decide if the bean will have its own threads.

• Data flow � Deciding if the data will be passed by properties or global data, via
notification or action events.

• Processing flow � The agent processing can be controlled by the default wiring
of data flow or can be hard-coded inside the extended agent.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 234

ABLE implements parallelism at the session level. In the implemented architecture, the
agent component can handle its own thread of control so that the simulation of the ANN is
independent from the simulation environment control. As the thread control can be
completely implemented by the extended AbleAgent it is probably possible to implement
parallelism inside the ANN model architecture as well. However, there are no references in
the ABLE manuals about already implemented parallelism on the ready-made ANN
components.

The ABLE ANN components are defined at the abstraction level of ANN model.
There are no lower level ANN components to be used as basic building blocks to facilitate
the construction of other ANN models. Therefore, the reusability at the level of ANN
structure and algorithm construction is minimal when it is necessary to build a new ANN
component. ABLE has a very complete tutorial on how to extend its components and good
quality of components documentation.

The GUI (AbleEditor � Figure 7.23) offers the opportunity to plug together the
AbleBeans in order to create AbleAgents for simulation. The editor is not very user friendly as a
visual programming environment. The gluing of the components is not intuitive because the
ways to connect the components are not visually explicit; it is necessary to navigate in menus
to find the connection possibilities. The components have visual inspections that include
graphics for visualizing the flow of data in different kinds of charts and network graphic
representation.

Figure 7.23 � Able Editor

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 235

New components can be added to the AbleEditor at runtime as .jar files including ANN
components. However, it is not possible to have more than one running simulation (agent)
simultaneously. The mechanisms for data access and transformation are based on
components that import or export data from text files and components (filters) that permit
the domain problem mapping and the transformation of the input data into appropriate
values for the ANN. Those components have a pretty similar behavior to the correspondent
CANN components. Table 7.4 resumes the ABLE simulator characteristics.

Table 7.4 � Resuming ABLE characteristics

Characteristic ABLE
Data visualization !

Visual programming !
GUI framework !

High level of abstraction !
Reusability !

Deploy facilities !
Testing facilities

Several ANN and domain
ANN components at runtime

System and components portability !
Data Access � ASCII, Database !

Manipulation/conversion facilities !
Domain knowledge modeling

Distribution facilities
Simulation and ANN parallelism !

7.3 Conclusion

By evaluating the two component and simulation environments, it is possible to clearly
define the unique characteristics of CANN and the characteristics that the analyzed tools
have also implemented. The Table 7.5 schematically shows the comparison of the CANN
and the two simulation environments. The other tools were clearly developed taking into
consideration the object-oriented approach, having design and reusability issues as primary
goals, like CANN did. It is possible to consider that the main characteristics that CANN
includes are:

• The component frameworks for building ANN models and simulation.

• The domain and ANN integration plus the possibility of running several
combinations of the two.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 236

• The parallelism and distribution facilities.

In general, when a project is focused on developing a simulation environment
performance is not the major design goal, but the software engineering aspects. In the
development of CANN the performance was not neglected because parallelism and
distribution design aspects were studied and implemented. The construction of the CANN
simulation tool reflects the existence of the two aspects, for instance it includes facilities such
as plugging new ANN components at runtime, executing different ANN models at the same
time and distributing the ANN components to run on the networked computers.

Table 7.5 � Software characteristics and the analyzed related work

Characteristic CANN ECANSE ABLE
Data visualization ! ! !

Visual programming ! !
GUI framework ! ! !

High level of abstraction ! ! !
Reusability ! ! !

Deploy facilities ! !
Testing facilities

Several ANN and domain !
ANN components at runtime !

System and components portability ! ! !
Data Access � ASCII, Database ! ! !

Manipulation/conversion facilities ! ! !
Domain knowledge modeling !

Distribution facilities !
Simulation and ANN parallelism ! ! !

The two analyzed tools have implemented characteristics that are not implemented or
considered in the CANN such as:

• Visual programming environment � A plug and play environment where the
ANN models and the simulations can be developed by visually plugging the
available components together.

• Data visualization � Components for visualizing data as text or graphics such as
the ANN input and output values, weight values, error signals, etc.

As a result, the future research and developments related to the CANN simulation
environment could be concentrated on improving the CANN best capabilities and what is

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 237

still missing or appears to be very useful by the evaluation of the other two tools. The two
main areas would be:

• Evolving the ANN components to be as complete as possible on its extension
and integration capabilities specially by polishing the ANN and simulation
frameworks. This effort should be complemented by the creation of a visual
programming environment where those components should be plugged
together at runtime as it was already done by ECANSE and ABLE.

• Evolving the distribution capabilities towards building an intelligent agents
simulation environment where concurrent and distributed agent applications
could be developed. The intelligent agents can include not only ANN based
agents but also agents whose inner intelligence can be implemented by other
algorithms.

Furthermore, there are some implementation issues that could be added to help with
some important activities improving CANN functionality. The use of XML files could
happen in many parts of the system such as:

• XML based knowledge description of the domain model (Olson and Kent,
1997) � The domain could be created either via the GUI interface or a XML
file that have a textual description of the problem domain at hand. The
simulator should be able to import or export domain models from and to such
an XML file. This could make the construction of the domain knowledge very
intuitive. Persisting the domain as an XML file allows for easy communication
of the represented knowledge, facilitating its reuse by any intelligent system.

• XML based learning and testing data � Text files is the most used form of
fetching data to the ANN simulators. However, the organization of those data,
positionally or using any separator, is very poor because the data can�t be easily
interpreted by the user or the system, and is very error prone because any
missing information or wrong position can lead to completely wrong results.
The use of an XML organization for these data can help with its handling for
the computer systems and for the humans.

• XML files for deploying the ANN � The ANN learned structure (ANN model,
number of layers, neurons, learning parameters, weight values, etc), could be

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 238

also persisted in XML files. This would permit to rebuild the ANN model in
any ANN simulation environment simply by correctly interpreting the ANN
information persisted on the XML file. The CANN should be able to import
and export such ANN representation.

• XML for deploying the ANN results � The results of the ANN simulation
sometimes have to be analyzed by other systems, organized in reports, graphics,
etc. The data evaluated by the ANN, especially when testing from a case base,
could be persisted in an XML file in order to be easily imported to other
systems or programs.

• XML script programming for batch running � The batch learning may be very
useful when it is necessary to make simulations during nonworking time or in
background (example of XML based scripting is the ANT (), a scripting
language for Java).

There are some additional aspects that could also be implemented by demand:

• Web interface for the simulator - The simulator can run associated to a web
server and be accessed via web. The distributed simulations could be
coordinated via this interface too.

• Component to monitor one ANN instance working - Useful when an ANN
component is deployed as a standalone component in a separate system or
application. This component could be connected to it in order to allow its
monitoring independent of the system flow.

CANN has brought some important engineering aspects to the simulation of ANN.
Many other aspects can still be explored. The frameworks implemented so far and the applied
technologies show the proper path for continuing the CANN evolution.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 239

8 C o n c l u s i o n s a n d F u t u r e W o r k

This chapter summarizes the work. Complementarily, it exposes the author�s vision
about the possible future work.

8.1 Conclusions

This work has shown that the application of framework technology leads to the
construction of ANN software with appropriate flexibility. The implementation of the
CANN framework based on an object-oriented design of neural network components
delivered the expected software benefits. The CANN components have been used for
different purposes in different systems as expected.

As already explained in Chapter 1, the CNM ANN component was applied to perform
credit rating in a retail company. The optimized CNM component was the base for the
implementation of a commercial data-mining toll, the AIRA (http://www.godigital.com.br)
that has been largely applied in the area of personalization of web sites. The CANN
simulation environment has been applied to weather forecast. In the work described in (da
Rosa et. Al, 2001a and 2001b), it is applied to rare event weather forecasting at airport
terminals. The CANN simulation environment also has been used as a simulation tool for
implementing a VMI solution (Vendor Managed Inventory) for an E-Business company
(http://www.mercador.com).

The framework design has given flexibility and reliability to those cited systems and
applications. The CANN framework components goals expanded from a classificatory
system with only one learning algorithm to the possibility of implementing many different
learning algorithms. The design permits the straightforward application of the different ANN
models to different ANN domain problems. Different data sources are easily coupled to the
domain problem at hand and applied to the ANN learning and testing processes. The design
also allowed the framework to add other implementation facilities such as parallelization and
distribution.

Implementing parallelism requires complete control over the ANN software
architecture in order to reproduce specific parallel software structures and control
mechanisms. The CANN framework offered the proper structures and mechanisms to

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 240

implement a generic solution to simulate ANN in parallel. The first implementation of
parallelism at the level of each synapses (Weight parallelism) proved to be too fine-grained,
leading to performance problems. The second solution implementing parallelism at the level
of Training session parallelism was appropriate for the given architecture. In such parallelism,
different ANN instances run in parallel sharing the CPU resources without degrading its
performance.

The architecture of each ANN model defines its possible parallel solutions. As the
architectures differ very much from model to model, it is very difficult to have a generic
parallel solution. However, the CANN framework facilitates the parallel implementation by
giving exact entry points for implementing thread control. There is a clear separation of
ANN architectural parts such as neurons, synapses and management components. Given
those facilities, it was straightforward to implement a parallel solution for the CNM model.
This implementation is unique; there are no other parallel implementations for the CNM
model so far. A positive consequence of having a specific parallel solution for the CNM
model is that it performs properly, leading to performance improvements. The CNM parallel
solution can accommodate the usage of the available hardware resources leading to a better
hardware usage during the learning and testing processes. The tests proved that it is possible
to create an appropriate number of threads in order to get the best results from the number
of available CPU�s.

Adding mobility to the ANN implementations in CANN was quite a straightforward
task basically because of the use of the Java language and the object architecture of the
CANN framework. The clear definition and separation of the objects that form the
architecture helped to choose where and how to implement the distribution without changing
the implementation done so far.

Unfortunately, the performance of the CANN distribution solution still is not in an
adequate level. The time for performing the ANN learning and testing on the remote
machines are significantly worse than the time spent when running on the local machine.
Further improvements of the distributed solution shall be done specially concentrated on
avoiding as much communication between the local and remote components as possible.

Even with performance limitations, the presented solution for the distribution of ANN
objects opens several application possibilities. It is possible to develop applications where it is

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 241

necessary to migrate the ANN code to perform artificial intelligent tasks in remote machines
such as classification, forecasting and clustering.

Another important contribution of this work was the proposition and implementation
of improvements on the CNM algorithm. The optimizations presented have significantly
reduced the generation of the combinatorial layer of the CNM model. In the approach
presented here, relevant findings are separated in a subset for each hypothesis, reducing the
number of findings to be considered, and nonsense combinations are avoided. A major
search space reduction has been achieved, as the generation of combinations is controlled in
order to avoid the pre-generation of all possible combinations for a given combination order.
The adequate software architecture of the CANN framework makes it possible to consider
each detail in the sense of best using the computational resources to make the CNM model
applicable.

Finally, the CANN CNM component implements the two algorithms, the original and
the optimized. It is important to reinforce/summarize the results obtained by the optimized
algorithm proposed here when compared with the original one:

6. About 1/3 of the time for learning.

7. About 1/2 of the memory used.

8. About 1/3 of the combinations generated.

9. Combination order up to 5.

10. Same classification quality.

Based on the construction of the CANN framework, a complete ANN simulation
environment was built. The CANN simulation environment was used to perform the tests of
each implemented ANN component. It was also used for evaluating the parallelism and
distribution solutions besides the CNM optimized algorithm. It has also been applied to
different areas from weather forecasting to web sites personalization.

In general, when a project is focused on developing a simulation environment, the
performance is not the major design goal, but the software engineering aspects. In the
development of CANN it did not happened, the performance was not neglected because
parallelism and distribution design aspects were studied and implemented. The construction

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 242

of the CANN simulation tool also includes facilities such as plugging new ANN components
at runtime, executing different ANN models at the same time and distributing the ANN
components to run on the networked computers.

The main characteristics that CANN includes are:

• The component frameworks for building ANN models and simulation.

• The domain and ANN integration plus the possibility of running several
combinations of the two.

• The parallelism and distribution facilities.

CANN has brought some important engineering aspects to the simulation of ANN.
Many other aspects can still be explored. The frameworks implemented so far and the applied
technologies show the proper path for continuing the CANN evolution.

As a corollary, based on the above conclusions it is possible to say that this work has
achieved its goals, which are:

• Come up with a flexible and efficient design for ANN implementation.

• Give hints on how to better develop ANN software.

• Come up with contributions on how to implement ANN parallelism in
software and code mobility for ANN architectures in order to provide ANN
execution in a distributed system.

• Promote contributions to ANN models improvements.

8.2 Future Work

The current design and implementation of CANN may be considered as a generic
decision-making system based on neural networks. An ambitious goal would be to enhance
the framework further, so that other decision-support problems can be supported. Also
ambitious would be to allow the implementation of other learning mechanisms that do not
rely only on neural networks, such as machine learning algorithms.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 243

The parallel implementation of CNM is intrinsically implemented in its architecture and
cannot be extended to other ANN models. It would be an important future implementation
experiment trying to add specific parallel solutions to other ANN models inside the CANN
framework such as the BackPropagation or SOM.

The distribution solution should be improved in order to achieve better performance
results. Additional topics that could be considered in future work on distribution include:

• Implement different distribution solutions for each of the considered ANN
models.

• Add knowledge representation and communication features to the object
agents using a knowledge communication language.

The future research and developments related to the CANN simulation environment
could be concentrated on improving the CANN best capabilities and what is still missing or
appears to be very useful by the evaluation of the other two tools. The two main areas would
be:

• Evolving the ANN components to be as complete as possible on its extension
and integration capabilities specially by polishing the ANN and simulation
frameworks. This effort should be complemented by the creation of a visual
programming environment where those components should be plugged
together at runtime such as already done by ECANSE and ABLE.

• Evolving the distribution capabilities towards of building an intelligent agents
simulation environment where concurrent and distributed agent applications
could be developed. The intelligent agents can include not only ANN based
agents but also agents whose inner intelligence can be implemented by other
algorithms.

The CANN simulation environment could also improve by having some user facilities,
such as:

• Visual programming environment � A plug and play environment where the
ANN models and the simulations can be developed by visually plugging the
available components together.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 244

• Data visualization � Components for visualizing data as text or graphics such as
the ANN input and output values, weight values, error signals, etc.

Furthermore, there are some implementation issues that could also be added to help
some important activities improve CANN functionality. The use of XML files could happen
in many parts of the system such as:

• The domain description of the problem.

• The description and persistence of the ANN structure.

• The persistence of the learning and testing data.

There are some additional aspects that could also be implemented by demand:

• Web interface for the simulator.

• Component to monitor one ANN instance working.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 245

9 R e f e r e n c e s

ABLE HTML Documentation. http://www.alphaworks.ibm.com/tech/able. IBM, (2000).
Aglets Software Development Kit. http://www.trl.ibm.com/aglets/ (IBM, 2000)
Agrawal, R.; Imielinski, T. & Swami, A. (1993). Mining association rules between sets of items in large

databases. In: Proceedings of the ACM SIGMOD Conference on Management of Data, 207-216.
Washington, DC.

Agrawal, R.; Mannila, H.; Srikant, R.; Toivonen, H. & Verkamo, A. I. (1996). Fast discovery of
association rules. Advances in knowledge discovery and data mining. Cambridge: AAAI Press/The
MIT Press.

Anderson, J., (1995). An Introduction to Neural Networks. MIT Press.
Beckenkamp, F.G. and Pree, W., (1999). Neural Network Framework Components. Book chapter in

Fayad M., Schmidt D.C. and Johnson R. editors, Object-Oriented Application Framework:
Applications and Experiences, John Wiley.

Beckenkamp, F.G., and Pree, W., (1999). Neural Network Framework Components. Fayad M.,
Schmidt D.C. and Johnson R. editors, Object-Oriented Application Framework: Applications and
Experiences, Volume 2, John Wiley.

Beckenkamp, F.G., and Pree, W., (2000). Neural Networks Components. Neural Computation 2000,
NC�2000. May 2000, Berlin, Germany. http://www.icsc-naiso.org/

Beckenkamp, F.G.; Pree, W. and Feldens, M. A. (1998). Optimizations of the Combinatorial Neural Model.
5th Brazilian Symposium on Neural Networks (SBRN'98). Belo Horizonte, Dezember 1998,
IEEE.

Blurock, Edward S., (1998). ANALYSIS++: Object-Oriented Framework for Multi-Strategy Machine
Learning Methods. ESPRIT Project 22897, UNI-SOFTWARE PLUS, A-4232 Hagenberg,
Austria. ftp://ftp.risc.uni-linz.ac.at/pub/techreports/1998/98-12.ps.gz.

Camp, D. van. (1993). A UserGuide for the Xerion Neural Network Simulator, Version 3.1, Department of
Computer Science, University of Toronto.

Coad and Jourdon (1991). Object-Oriented Design. Yourdon Press Computing Series. ISBN: 0136300707
Da Rosa, S.I.V., Beckenkamp, F.G., and Hoppen, N. (1997). The Application of Fuzzy Logic to

Model Semantic Variables in a Hybrid Model for Classification Expert Systems. Proceedings of
the Second International ICSC Symposium on Fuzzy Logic and Applications (ISFL'97). Zurich,
Switzerland

Da Rosa, S.I.V., Leão, B.F., and Hoppen, N. (1995). Hybrid Model for Classification Expert System.
Proceedings of the XXI Latin American Conference on Computer Science. Canela, Brazil.

Da Rosa, S.I.V; Burnstein, F and Beckenkamp, F.G. (2000). An empirical study of distribution based
on Voyager: A performance analysis. HICS�2000.

Dawson, C.K. O'Reilly, R.C. and McClelland, J.L. (1997). The PDP++ Sofware Users Manual, Version
1.2. Technical report, Carnegie Mellon University.

Denis, F.A.R.M. and Machado, R.J. (1991). O Modelo Conexionista Evolutivo. Rio de Janeiro: IBM � Rio
Scientific Center (Technical Report CCR - 128).

ECANSE � User�s Manual. SIEMENS AG, (1998).
Feldens, M.A. and Castilho, J. M. V. (1997). Data mining with the combinatorial rule model: an

application in a health-care relational database. In: XXIII CLEI. Valparaíso, Chile.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 246

Fontoura, M., Pree, W. and Rumpe, B. (2000). UML-F: A Modeling Language for Object-Oriented

Frameworks. European Conference on Object-Oriented Programming (ECOOP�2000), Sophia Antipolis
and Cannes, France.

Fontoura, M., Pree, W. and Rumpe, B. (2001). The UML-F Profile for Framework Architectures. To be
published by Addison-Wesley/Pearson Education in fall 2001.

Freeman, J. A. and Skapura, D. M. (1992). Neural Networks: Algorithms, Applications, and Programming
Techniques. Addison-Wesley.

Fuggetta, A., Picco G. P. and Vigna G. (1998). Understanding Code Mobility. IEEE Transactions on
Software Engineering, Vol. 24.

Gamma, E., Helm R., Johnson R. and Vlissides J. (1995). Design Patterns�Elements of Reusable Object-
Oriented Software. Reading, Massachusetts: Addison-Wesley

Goddard, N.; Lynne, K.; Mintzk T. and Bukys, L. (1989). Rochester Connectionist Simulator, Technical
Report TR 233 (revised), Dep. of Comp. Sci., University of Rochester.

Grossberg,. S. (1987). Competitive Learning: From Interactive Activation to Adaptive Resonance.
Cognitive Science. Vol. 11, p. 23-63.

Guazelli, A. and Leão, B.F. (1994). Incorporating semantics to ART. IEEE International Conference
on Neural Networks. vol.3, p.1726-1731 : il. Piscataway 1994.

Hammerstrom, D. (1990). A VLSI architecture for High-Performance, Low-Cost, On-Chip Learning,
In Proc. International Joint Conference on Neural Networks, pages II--537--543.

Haykin, S., (1994). Neural Networks A Comprehensive Foundation. Upper Saddle River, NJ, Prentice-Hall
Hecht-Nielsen, R. (1989). Neurocomputing. Addison-Wesley.
Hopfield, J.J. (1982). Neural networks and phisical systems with emergent collective computational

abilities. Proceedings of the National Academy of Sciences of the U.S.A. 79, 2554-2558.
Hopp, H. and Prechelt, L. (1997). CuPit-2: A Portable Parallel Programming Language for Artificial

Neural Networks, Proc. 15th IMACS World Congress on Scientific Computation, Modelling, and
Applied Mathematics, Berlin, Germany.

Hwang, Kai and Xu, Zhiwei. (1998). Scalable Parallel Computing. MacGraw-Hill.
Jabri, M. Tinker, E. and Leerink, L. (1994). Mume: A multi-net multi-architecture neural simulation

environment. Neural Network Simulation Environments. Editor Josef Skrzypek,, pages 229-- 247.
Kluwer, Norwell:MA.

Kock, Gerd and Serbdzija, Nikola B. (1994). Artificial Neural Networks: From Compact Descriptions
to C++, Proc. of the Int. Conference on Artificial Neural Networks (ICANN�94). Pp. 1372-1375.

Kock, Gerd and Serbdzija, Nikola B. (1996). Simulation of Artificial Neural Networks. SAMS, Vol. 27, pp.
15-59.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological
Cybernetics 43, 59-69.

Kosko, B. (1988). Bidirectional associative memories. IEEE Transactions on Systems, Man, and
Cybernetics. vol. 18, pp. 49-60, Jan/Feb.

Kosko, B. (1992). Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ: Prentice-Hall
Lawrence D. (1991). The Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold
Lea, Doug. (1999). Concurent Programming in Java. 2nd Edition, Addison-Wesley.
Leao, B. F. and Reategui, E. (1993). Hycones: a hybrid connectionist expert system. Proceedings of

the Seventeenth Annual Symposium on Computer Applications in Medical Care - SCAMC, IEEE
Computer Society, Maryland.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 247

Leão, B. F. and Reátegui, E. (1993a). A hybrid connectionist expert system to solve classificational

problems. Proceedings of Computers in Cardiology , IEEE Computer, IEEE Computer Society,
London.

Leão, B. F. and Rocha, A. F. (1990). Proposed Methodology for Knowledge Acquisition: A Study on
Congenital Heart Disease Diagnosis. Methods of Information in Medicine. 29(1), p. 30-40.

Linden, A. Sudbrak, Th. Tietz, Ch. and Weber, F. (1993). An Object-Oriented Framework for the
Simulation of Neural Nets. In Advances in Neural Information Processing Systems 5, pages 797--804,
San Mateo, Ca. Morgan Kaufmann Publishers.

Log4J project. http://jakarta.apache.org/log4j/docs/index.html (Apache Software Foundation)
Machado, R. J. and Rocha, A. F. (1990). The combinatorial neural network: a connectionist model for

knowledge based systems. In B. Bouchon-Meunier, R. R. Yager, and L. A. Zadeh, editors,
Uncertainty in knowledge bases. Springer Verlag.

Machado, R. J., Barbosa V. C. and Neves P.A. (1998). Learning in the Combinatorial Neural Model.
IEEE Transactions on Neural Networks. Vol. 9, No. 5.

Machado, R.J. and Rocha, A.F. (1989). Handling Knowledge in High Order Neural Networks: The
Combinatorial Neural Model. Rio de Janeiro: IBM Rio Scientific Center (Technical Report
CCR076).

Machado, R.J. and Rocha, A.F. (1991). The combinatorial neural network: a connectionist model for
knowledge based systems. In B. Bouchon-Meunier, R. R. Yager, and L.A. Zadeh, editors,
Uncertainty in Knowledge Bases. Springer Verlag.

Machado, R.J. and Rocha, A.F. (1992). Evolutive fuzzy neural networks. Proceedings of the IEEE
International Conference on Fuzzy Systems.

Masters, T. (1993). Practical Neural Networks Recipes in C++. Academic Press.
Medsker, L. R. and Bailey, D. L., (1992). Models and Guideliness for Integratig Expert Systems and

Neural Networks. In: Kandel A. & Langholz G. Hybrid Architectures for Intelligent Systems, CRC
Press.

NeuralWorks Reference Guide, NeuralWare, Inc. (1995).
Olson, D. and Kent, R.E. (1997). Conceptual knowledge markup language, an XML application.

Unpublished presentation, given at the XML Developers Day, August 21, 1997, Montreal
Canada.

Prechelt, Lutz. (1994). CuPit � A Parallel language for Neural Algorithms: Language Reference and
Tutorial. Technical Report 4/94, Fakultät für Informatik, Universität Karlsruhe, Germany.

Pree, W. (1991). Object-Oriented Versus Conventional Construction of User Interface Prototyping Tools
(PhD thesis), Publisher: Verband der wissenschaftlichen Gesellschaften Österreichs (VWGÖ),
Vienna.

Pree, W. (1995). Design Patterns for Object-Oriented Software Development. Reading, MA: Addison-
Wesley/ACM Press.

Pree, W. (1997). Object-Oriented Design Patterns and Hot Spot Cards. IEEE International Conference
on the Engineering of Complex Computer Systems (ICECCS�97), Como, Italy.

Pree, W. (2000). Hot-Spot-Driven Framework Development. Building Application Frameworks: Object-
Oriented Foundations of Framework Design (ed.: M. Fayad, D. Schmidt, R. Johnson), Wiley & Sons,
New York City.

Pree, W. and Koskimies, K. (1999). Framelets�Small and Loosely Coupled Frameworks. ACM
Computing Survey Symposium on Application Frameworks (Ed.: M. Fayad).

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 248

Pree, W. and Koskimies, K. (2000). Framelets�Small is Beautiful. Building Application Frameworks:

Object-Oriented Foundations of Framework Design (ed.: M. Fayad, D. Schmidt, R. Johnson), Wiley &
Sons, New York City.

Pree, W., Althammer, E. and Sikora, H. (1998). Framelets als handliche Architekturbausteine.
Softwaretechnik �98. Paderborn, Germany.

Pree, W., Beckenkamp, F. and da Rosa, S.I.V. (1997). Object-Oriented Design & Implementation of a
Flexible Software Architecture for Decision Support Systems. 9th International Conference on Software
Engineering and Knowledge Engineering - SEKE�97. Madrid, June 1997.

Ramacher, U. (1992). SYNAPSE - A Neurocomputer that Synthesizes Neural Algorithms on a
Parallel Systolic Engine. Journal of Parallel and Distributed Computing, 14:306--318.

Reátegui, E. and Campbell, J. (1994). A classification system for credit card transactions. In Haton, J-
P., Keane, M., Manago, M. (eds). Advances in Case-Based Reasoning. Second European Workshop
EWCBR-94. Chantilly, France. Springer Verlag

Reátegui, E., Torres, R., Campbell, J. (2001). Personalizing with Recommendation Frames. 2001
ACM SIGIR Workshop on Recommender Systems, New Orleans, EUA

Rogers, J. (1997). Object-Oriented Neural Networks in C++. Academic Press.
Rojas, R., (1996). Neural Networks: A Systematic Introduction. Springer-Verlag.
Rumelhart, D.E., and McClelland, J.L. (1986). Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, Vol. 1. Cambridge, Ma: MIT Press.
Simpson, P. K. (1992). Foundations of Neural Networks. In Sánches-Sinencio, E. and Lau, C.

Artificial Neural Networks: Paradigms, Applications, and Hardware Implementations. IEEE
Press.

Skapura, D. M. (1996). Building Neural Networks. Addison-Wesley.
Skillkorn, D. B. and Talia, D. (1998). Models and Languages for Parallel Computation. ACM

Computing Surveys. June 1998, Volume 30, Number 2.
Strey, A. (1999). EpsiloNN --- A Tool for the Abstract Specification and Parallel Simulation of Neural Networks.

Systems Analysis Modelling Simulation (SAMS), Gordon & Breach.
Szyperski, C. (1998). Component Software: Beyond Object-Oriented Programming. Addison-Wesley.
The Sumatra Project. http://www.cs.arizona.edu/sumatra/ (Arizona University)
Viademonte, S., Burstein, F. (2001b). An Intelligent Decision Support Model for Aviation Weather

Forecasting. The 4th International Conference on Intelligent Data Analysis (IDA 2001).
Conference proceedings "Advances in Intelligent Data Analysis", LNCS 2189, Pages 278-288.
Cascais, Portugal.

Viademonte, S., Burstein, F., Dahni, R., Willians, S. (2001a). Discovering Knowledge from
Meteorological Databases: A Meteorological Aviation Forecast Study. Third International
Conference on Data Warehousing and Knowledge Discovery (DaWaK 2001). Conference
proceedings, LNCS 2114, Pages 61-70. Munich, Germany.

Vondrák, I. (1994). Object-Oriented Design of Artificial Neural Networks. Proceedings of the IDG
Czechoslovakia. VSP International Science Publishers, Netherlands.

Vondrák, I. (1994a). Object-Oriented Neural Networks. AI Expert, Vol. 9(6), pg.20-25.
Weinand A., Gamma E. and Marty R. (1989). Design and Implementation of ET++, a Seamless

Object-Oriented Application Framework. Structured Programming, 10(2), Springer Verlag.
Wirfs-Brock, R. and Johnson, R. (1990). Surveying Current Research in Object-Oriented Design.

Communications of the ACM, 33(9).
Wooldridge, Michael, Nicholas, Jennings (1995) Inteligent Agents: Theory and Practice. Inteligent Agents,

Springer-Verlag, Berlin.

University of Constance

Computer & Information Science

Software Research Laboratory
A Component Architecture for
Artificial Neural Networks
Fábio Ghignatti Beckenkamp
June 2002
Page 249

Zell, A. et. Al. (1995). SNNS � Stuttgart Neural Network Simulator. User Manual, Version 4.1. Report

No. 6/95.

